Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
C.Q. Wu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 689-692, May 15–18, 2006,
Abstract
View Paper
PDF
In order to improve the wear resistance and service life of the copper, the composite coating consisting of a Ni-base self-fluxing alloy (NiCrWB+50%Al 2 O 3 ) and WC (WC-12%Co) alloy were sprayed on a copper substrate using High Velocity Air Fuel(HVAF). The coating could meet the operating requirements including high hardness, good wear resistance and low cost. The Ni-base composite coating was analyzed by means of optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results indicated that the structure of coating was composed of melted particles and partly unmelted round particles of Ni-base alloy, and WC particle. Only a small proportion of the Al 2 O 3 particles were retained in the coating. The phases in the coating consisted of γ-Ni, WC and a little Ni 3 B. Amorphous structures appeared and some Al 2 O 3 phase existed. The adhesion strength between coating and copper substrate was more than 50MPa. Wear results showed that the Ni-base composite coating exhibited better wear resistance than the coating with no WC particles.