Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
C. V. Cojocaru
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 184-189, May 21–23, 2014,
Abstract
View Paper
PDF
This study compares the dielectric properties of annealed forsterite (Mg 2 SiO 4 ) and alumina coatings deposited on mild steel substrates by atmospheric plasma spraying. As-sprayed coating samples were electrically characterized then submitted to a series of one-hour annealing treatments at temperatures from 300 to 800 °F. After each treatment, impedance measurements were recorded over a frequency range of 30 to 100 kHz. An electrical model was fitted to Nyquist data (Im Z vs. Re Z) using a least-mean-square algorithm with a weighting function. Although impedance spectroscopy measurements were obtained at different temperatures, this paper focuses on the acquisition, modeling, and comparison of room temperature properties, particularly electrical resistivity and dielectric constant. It also compares the microstructure of as-sprayed and annealed forsterite and alumina coatings and discusses coating degradation mechanisms stemming from differences in CTE.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 171-176, September 27–29, 2011,
Abstract
View Paper
PDF
Compositionally graded mullite/ZrO 2 coatings, have been tested as environmental barrier coatings (EBCs) for protection against water vapor corrosion of Si-based ceramic components intended for application in turbine engines. Four and five layered systems were engineered by plasma spraying over SiC substrates consisting of a Si bond coat layer, 2 or 3 mullite/ZrO 2 composite graded layers as middle layers and a nanostructured YSZ topcoat. These coatings were heat treated at 1300 °C in both stationary and thermal cycling conditions in a controlled water vapor environment. The effect of these ageing conditions on the coatings was comparatively investigated. Crystallization of the composite coatings and sintering of the YSZ topcoat was perceived. A reduction of SiO 2 content was detected in the composite layers before aging. The porosity of the coating did not change appreciably with the ageing tests and only the evolution of the pre-existing cracks and the growing of a thermally grown oxide layer can be highlighted as the major effect of the ageing tests.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 283-290, September 27–29, 2011,
Abstract
View Paper
PDF
The ongoing development of environmental barrier coatings (EBCs) offers the prospect to implement the full potential of silicon-based ceramics for high temperature structural applications. The current state-of-the-art EBC system comprises a Si bond coat, a mullite (3Al 2 O 3 ·2SiO 2 ) interlayer and a (1-x)BaO·xSrO·Al 2 O 3 ·2SiO 2 , 0 ≤ x ≤ 1 (BSAS) crack-resistant and water vapour attack resistant top coat. In this study, the influence of water vapour corrosion on the structural and mechanical properties of plasma-sprayed Si/Mullite/BSAS architectures was assessed by furnace thermal cycle testing (e.g., 100 cycles, 2h/cycle at 1300°C). Commercially available mullite and BSAS powders were used to produce crystalline coatings by air plasma spraying. Fully crystalline mullite and celsian BSAS coatings were engineered under controlled conditions on silicon coated, sintered α-SiC Hexoloy substrates. The overall performance at high-temperature of these functionally graded EBCs is discussed and correlated to their microstructural characteristics.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 654-657, May 3–5, 2010,
Abstract
View Paper
PDF
Mullite and mullite/ZrO 2 bi-layer systems are being considered as environment barrier coatings (EBCs) for protection of Si-based (Si 3 N 4 , SiC) substrates against water vapor corrosion for application in forthcoming turbine engines. An approach to reduce the thermal expansion mismatch between mullite and ZrO 2 layers in those coatings would be to tailor intermediate mullite/Y-ZrO 2 composite layers. The feasibility of these composite layers is studied in a comparative manner by plasma spraying both single mullite and bi-layer coatings of mullite and of mullite/ Y-ZrO 2 (75/25 vol %.) over Hexoloy SiC substrates. All feedstock materials are equally prepared using spray drying methods as the mix powders are not commercially available. Singular spraying conditions are used to assure enhanced crystallization of the mullite phase. Coatings are aged for 100 h at 1300 °C in a controlled water vapor environment. The effect of water corrosion on the exposed coatings is comparatively investigated, determining changes in crystalline phase by X-ray diffraction (XRD), the crystallization of amorphous phases is highlighted by the use of differential thermal analysis (DTA) tools and the microstructure of the polished coatings is analyzed by scanning electron microscopy (SEM).
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 730-735, May 3–5, 2010,
Abstract
View Paper
PDF
Mullite (Al 6 Si 2 O 13 ) is the basis of efficient environmental barrier coatings (EBCs) for protecting Si-based ceramic matrix composites (CMCs) selected to replace specific hot-section metallic components in advanced gas turbines. Furthermore, YSZ-mullite multilayer architectures with compositional grading between the bond coat and YSZ top coat were envisioned as solutions to ease their coefficient of thermal expansion (CTE) mismatch induced stress. Consequently, a proper understanding of the mechanical properties such as the elastic modulus, hardness or plastic/elastic recovery work serve for an efficient design of such refractory oxide multilayers. In this work, three different mullite powder morphologies (fused and crushed, spray-dried and freeze-granulated) were employed. Using depth-sensing indentation with loads in the range 100 – 500 mN, the role of the microstructure and morphology of the powder feedstock on the mechanical behaviour of air plasma sprayed mullite bond coats deposited on SiC Hexoloy substrates was investigated. Fully crystalline as-sprayed mullite coatings were engineered under controlled deposition conditions. Mechanical properties were measured for the as-sprayed coatings as well as for coatings heat-treated at 1300°C, in water vapour environment, for periods up to 500 h. Both E and H values of the coatings are found to be highly dependent on the morphology of the starting powders.