Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
C. T. Salling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 87-96, November 14–18, 1999,
Abstract
View Paper
PDF
This paper presents the results of a study to assess the timing measurement capabilities of e-beam probes and how they compare to mechanical probes in terms of sampling time, accuracy, and repeatability. Analysis of the data indicates that the transient response of mechanical probes is prone to overshoot and ringing, which contributes significantly to measurement error and uncertainty. E-beam probes, on the other hand, are subject to charging effects and interference which, as the authors show, can be effectively eliminated, facilitating high-speed timing measurements accurate to within a few picoseconds.