Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
C. Stournaras
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 141-146, March 17–19, 1999,
Abstract
View Papertitled, High Temperature Sliding Wear of Co-Based Plasma Sprayed Coatings for Aeronautical Applications
View
PDF
for content titled, High Temperature Sliding Wear of Co-Based Plasma Sprayed Coatings for Aeronautical Applications
Co-based alloys are used extensively in applications requiring good wear resistance, corrosion and heat resistance. This paper presents the wear data of Co-based plasma sprayed coatings for aeronautical applications at temperatures up to 750 deg C, evaluated in a pin-on-disk unit. Investigation of the coating structure and the wear mechanisms revealed the processing-structure-functionality relationships. The analysis of the tribological results was supported by structure, microhardness and X-ray diffraction studies of the coatings. An SEM examination of the wear marks revealed the predominantly active wear mechanisms in each case. Paper includes a German-language abstract.