Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
C. Gheorghieş
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1199-1204, May 15–18, 2006,
Abstract
View Paper
PDF
Multilayer high-speed cladding by injection of a M2 steel powder with 0.82%C, 4.7%Mo, 6.4%W, 4.1%Cr, 2.02%V, 0.3%Mn, as chemical composition, in a melted bath produced using a CO 2 continuous wave laser connected to a x-y-z coordinate table was tested in order to increase the wear resistance and heat stability of tool active surfaces made of 0.45%C steel. Layers made by different laser runs were characterized by macro and microstructure analysis, as well as a phase identification analysis by X-ray diffractometry, micro-hardening analysis and hardness testing on the coated layer surfaces in order to establish the optimal cladding condition. Lathe tools made using this technique showed a good ability to maintain their cutting power during steel shaping.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1205-1210, May 15–18, 2006,
Abstract
View Paper
PDF
In order to increase the wear and corrosion resistance of 0.45% C surface steel layers, a multilayer coating was tested by injection of a powder with 8.9% Cr, 4.5% Fe, 5.1% B, 2.4% Al, 0.6% Cu and all remainder of Ni in the melted bath produced using a CO 2 continuous wave laser. To determine the optimal melting regime, the layers obtained by different laser conditions were characterized by macro and microstructure analysis, as well as a phase qualitative analysis by X-ray diffractometry and microhardness analysis.