Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
C. Bjerken
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1651-1656, May 25–29, 1998,
Abstract
View Paper
PDF
A straight-forward method for calculating the stress intensity factors (or the energy release rate and mode mixity) for interfacial cracks in bi-materials has been developed. An existing method for homogeneous materials, based on the computation of the energy release rate from the nodal forces and displacements given by a finite element analysis, was modified to include the mismatch in material properties. Thick thermal barrier coatings usually fail as a result of cracking near the interface. The influence of the thickness and the edge angle of the coating on the energy release rate and mode mixity for a small edge crack at the interface of a TBC system subjected to thermal loading was investigated. It was established that the high energy release rates obtained for thick coatings can be reduced by decreasing the edge angle of the coating. Additionally a comparison with energy release rates given by J-integral computations has been done.