Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Brett A. Buchea
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 382-387, November 1–5, 2015,
Abstract
View Paper
PDF
A novel fault isolation technique, electron beam induced resistance change (EBIRCh), allows for the direct stimulation and localization of eBeam current sensitive defects with resolution of approximately 100nm square, continuing a history of beam based failure isolation methods. EBIRCh has been shown to work over a range of defects, significantly decreasing the time required for isolation of shorts through straightforward high resolution imagery, allowing for explicit visual defect isolation with a linear resolution of approximately 10nm. This paper discusses the operational setups for the source and amplifier while performing an EBIRCh scan, describes the processes involved in the Intel test vehicle that was used to test EBIRCh, and provides information on two independent functional theories for EBIRCh that operate in conjunction to a greater or lesser extent depending on the defect type. EBIRCh is expected to improve through-put and resolution on various defect types compared to conventional fault isolation techniques.