Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Brenton Knuffman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 284-288, November 9–13, 2014,
Abstract
View Papertitled, New Ion Source for High Precision FIB Nanomachining and Circuit Edit
View
PDF
for content titled, New Ion Source for High Precision FIB Nanomachining and Circuit Edit
We present a review of the Low Temperature Ion Source (LoTIS): its aims, design, performance data collected to date, and focused spot size projections when integrated with a FIB. LoTIS provides a Cs+ beam that has been measured to have high brightness (> 10 7 Am -2 sr -1 eV -1 ), and low-energy spread (< 0.5 eV). These source characteristics enable a prediction of subnm focused spot sizes. A FIB with the capabilities enabled by LoTIS would be well-suited to addressing FIB failure analysis tasks such as nanomachining, circuit edit, and site-specific SIMS.