Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Beomjun Kim
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 233-237, November 12–16, 2023,
Abstract
View Papertitled, The Influence of Temperature on Photoresist Profiles during TEM Sample Preparation using Cryo-FIB
View
PDF
for content titled, The Influence of Temperature on Photoresist Profiles during TEM Sample Preparation using Cryo-FIB
Photoresist (PR) profiles tend to have deformation and shrinkage with typical transmission electron microscopy (TEM) sample preparation methods using a focused ion beam scanning electron microscope (FIB-SEM). As the temperature increases during the TEM sample preparation, it may lead to deformation and shrinkage in PR profiles. In this study, we analyze the impact when performing the sample preparation at a cold temperature using a cryo-FIB to minimize deformation and shrinkage issues. To test this methodology, the TEM sample preparation process was performed under different conditions. From these experiments, the TEM results with full cryo conditions showed that the PR line to space ratio was closest to the target, which is the sample’s real line to space ratio (1:1), and the bottom anti-reflective coating (BARC) shrinkage was minimized.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 313-316, November 10–14, 2019,
Abstract
View Papertitled, Failure Analysis Approaches for Stacking Fault Defects in FinFET Devices
View
PDF
for content titled, Failure Analysis Approaches for Stacking Fault Defects in FinFET Devices
In this paper, the stacking fault defects in FinFETs are described as the root cause of the PLL failure. Failure analysis approaches such as photon emission microscopy and nano probing were applied to pinpoint the exact stacking fault location in even transistor level and High resolution TEM confirmed the stacking fault defects in the Fin which was isolated by nano probing. RX local density was confirmed as the key factor in stacking fault generation by TCAD simulation. RX new mask with dummy addition was made to mitigate stress and was confirmed to be effective to reduce the compressive strain at the channel in FinFETs by Geometric Phase Analysis (GPA) which provided sufficiently practical local strain measurement data. The GPA techniques demonstrated here are informative for process improvement and failure analysis in FinFET devices. Keywords – Stacking Fault, Geometric Phase Analysis