Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
B. L. Ferguson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 129-137, October 24–26, 2017,
Abstract
View Paper
PDF
Heat treaters are encountering an ever-increasing need for practical process design and troubleshooting methods to effectively address quality, cost and production time requirements for thermal treatment of steel parts. Over the last two decades, substantial advances have been made in heat treatment process modeling, now permitting user-friendly and robust means for process engineers, designers, and other heat treatment technical professionals to readily apply advanced modeling technology to address complex, “real-life” heat treatment challenges. DANTE modeling software has now been implemented for ready application to carburizing and hardening processes with the consideration of phase transformation, following the process parameters input from heat treaters. This paper highlights a user-friendly and advanced modeling tool now available for solving practical heat treatment challenges. Several case studies using DANTE will cover induction hardening, press quenching and plug quenching, and low pressure carburizing. Also shown are the important benefits received from this technology, including minimization of the costly “trial and error” approach to troubleshooting, and evaluating the effect of process parameters on part quality.