Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Arnold Yazzie
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 230-233, November 1–5, 2015,
Abstract
View Paper
PDF
Embedded non-volatile memory (NVM) technologies are used in almost all areas of semiconductor chip applications, as it becomes increasingly vital to retain information when the electronics power is off. Nano-probing techniques, such as atomic force probe (AFP), allow us to access individual devices at contact or via levels and characterize the details as much as possible before a decision can be made for physical analysis. This paper reports the application of AFP to characterize each individual bit at contact level or individual column at via1 level. It presents two cases to identify the failures encountered in fabricated embedded NVM: column-column leakage and single bit erase failure. The first case shows that silicide residual could cause column to column leakage by creating electrical path between active areas of adjacent columns, while the second case shows that single bit failures due to low erase current can be recovered with repeated program/erase cycle.