Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Anuradha Swaminathan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 264-266, November 1–5, 2015,
Abstract
View Paper
PDF
Although there are many advanced technologies and techniques for silicon diagnostics, effective failure analysis to root cause is getting increasingly challenging, as very often the electrical failure analysis data would point to a symptom that is the result of the defect rather than the actual location of the defect. Therefore, a combination of multiple techniques is often employed so that sensitivity of "the cause of the problem" can be observed. This work compiles a successful analysis with the aid of continuous wave laser voltage probing and soft defect localization techniques and presents three cases that are voltage-sensitive fails. The first case is a 28 nm device which failed at-speed scan. The second case is a 28 nm device failing RAM register BIST with high Vmin and the third case is a scan shift failure in a less than 28nm device.