Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Andrea Bahgat Shehata
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2016) 18 (4): 16–22.
Published: 01 November 2016
Abstract
View articletitled, Superconducting Single Photon Detector Enables Time-Resolved Emission Testing of Low Voltage Scaled ICs
View
PDF
for article titled, Superconducting Single Photon Detector Enables Time-Resolved Emission Testing of Low Voltage Scaled ICs
Advancements in photodetector technology are revitalizing time-resolved emission (TRE) techniques in semiconductor failure analysis. In this article, the authors explain how superconducting single-photon detectors improve the capabilities of TRE measurements as demonstrated on 14 nm FinFET technology and an inverter chain with power supply voltages down to 0.4 V.
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 38-44, November 6–10, 2016,
Abstract
View Papertitled, Extending the Resolution of Emission Images beyond Diffraction Limits Using Deconvolution
View
PDF
for content titled, Extending the Resolution of Emission Images beyond Diffraction Limits Using Deconvolution
In this work, we demonstrate the effectiveness of deconvolution algorithms in improving the spatial resolution of time-integrated emission images from integrated circuits. A mathematical model of the Point Spread Function (PSF) encompassing both the optical system and the imaging detector properties is used for the deconvolution process. Tuning of the PSF parameters is achieved through the minimization of dedicated cost functions that optimize image resolution while suppressing artifacts in the deconvoluted images. The optimized PSF is then used in both the Lucy-Richardson (L-R) and blind deconvolution algorithms. Results from 32 nm and 14 nm SOI devices show that the deconvolution process significantly improves spatial resolution of time-integrated emission images, pushing their resolution beyond the diffraction limit of Solid Immersion Lenses (SILs).
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 6-11, November 9–13, 2014,
Abstract
View Papertitled, Novel NIR Camera with Extended Sensitivity and Low Noise for Photon Emission Microscopy of VLSI Circuits
View
PDF
for content titled, Novel NIR Camera with Extended Sensitivity and Low Noise for Photon Emission Microscopy of VLSI Circuits
This work presents a new photon emission microscopy camera prototype for the acquisition of intrinsic light emitted from VLSI circuits during their normal operation. This novel camera was designed to be sensitive to longer wavelengths in order to maximize the signal intensities from modern VLSI chips which are characterized by a red shift in the intrinsic emission spectrum. In this paper, we will characterize the performance of the camera using 32 nm and 22 nm SOI chips. The novel camera is able to collect emission images with the circuit under test operating at a supply voltage down to 0.5 V, exceeding the performance of a state-of-the-art InGaAs camera.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 406-412, November 9–13, 2014,
Abstract
View Papertitled, Ultra-Low Voltage Time-Resolved Emission Measurements from 32 nm SOI CMOS Integrated Circuits
View
PDF
for content titled, Ultra-Low Voltage Time-Resolved Emission Measurements from 32 nm SOI CMOS Integrated Circuits
This work presents a comparison of two generations of Superconducting nanowire Single-Photon Detector (SnSPD) prototypes used for Time-Resolved Emission (TRE) measurements from VLSI chips. The performance of the systems is compared in order to understand the figures of merit that a single-photon detector should have to enable the acquisition of time resolved emission waveforms for ultra-low voltage applications. We will show that measurements down to a new World record low 0.4 V supply voltage were made possible by a careful optimization of the detector front-end electronics. We also characterized the emission from devices with different threshold voltages in order to understand how the emission contributions depend on this parameter and how this affects the resulting waveform SNR.