Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Agnieszka Brewka-Stanulewicz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 334-340, September 14–16, 2021,
Abstract
View Paper
PDF
Low pressure carburizing (LPC) is a proven, robust case hardening process whose potential is only limited by the style and size of vacuum furnace. Today, LPC is typically used in horizontal vacuum furnaces where the opportunity to carburize large parts is limited. In this paper we present a new adaptation of the technology in large pit type vacuum furnaces, capable of opening to air at elevated temperature. This underscores the potential of LPC to carburize larger, more massive parts in a clean, effective and efficient process. The result is quality casehardened parts without the undesirable side effects of atmosphere gas carburizing such as the use of a flammable atmosphere, reduced CO and NOx emissions, no intergranular oxidation, and limited retort life. Another significant advantage is decreased process time. The case study presented here shows that eliminating furnace conditioning and increasing process temperature can significantly reduce cycle durations by nearly three times and cut utility costs in half. Under these conditions, a return on investment (ROI) is in the neighborhood of 1 – 2 years is possible, making LPC in a pit style furnace a cost-effective solution than traditional atmosphere gas carburizing technologies.