Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Adam T. Hope
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 302-304, October 24–26, 2017,
Abstract
View Paper
PDF
High entropy alloys (HEA) are an exciting new class of alloys composed of several metallic elements with equiatomic or near-equiatomic composition to maximize configurational entropy, leading to desirable properties. However, during solidification, as in casting or welding processes, elements segregate, creating local regions of distinct composition. In conventional alloy systems, homogenization heat treatments are used to remove this segregation effect. This study examines the conditions of the heat treatment needed in HEA alloys. First, the solidification behavior of equiatomic alloy composition AlCoCrCuFeNi is modeled using the Scheil module within Thermo-Calc along with the TCHEA2 database. Energy dispersive spectroscopy (EDS) is performed across the dendrite arms of the as-melted HEA to compare with the Scheil calculations. The resulting dendritic and interdendritic compositions are used as inputs in Thermo- Calc to determine the stable phases as a function of temperature. Selected heat treatments are conducted on the as-melted HEA to compare with the calculation results.