Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Adam Rose
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 43-46, October 30–November 3, 2022,
Abstract
View Paper
PDF
This paper introduces the use of machine learning models in the characterization of bitmap fail patterns occurring on SRAM to identify FEOL/MEOL layers defectivity distribution. The results of bitmap patterns with test conditions are used for fault analysis post-processing and manufacturing yield improvement methodologies. Several machine learning models were built for prediction of the FEOL/MEOL layer defects based on hundreds of bitmap physical failure analysis results. A model utilizing a multilayer perceptron (MLP) architecture with backpropagation of error were optimized and it can be easily applied to volume products with millions of bitmap test results with >80% accuracy. It is the first time we are able to investigate the FEOL/MEOL defects density quantitatively through an automatic diagnosis tool.