Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
A.T Fry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, October 15–18, 2024,
Abstract
View Paper
PDF
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 35-46, October 21–24, 2019,
Abstract
View Paper
PDF
The measurement of damage from high temperature solid particle erosion (HTSPE) can be a lengthy process within the laboratory with many lab-based systems requiring sequential heat and cooling of the test piece to enable mass and/or scar volume measurements to be made ex situ. Over the last few years a new lab-based system has been in development at the National Physical Laboratory which has the ability to measure the mass and volume change of eroded samples in situ without the need to cool the sample. Results have previously been shown demonstrating the in situ mass measurement, more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability to manufacture low volume complex parts and has been used in rapid prototyping. As the technique has developed there is increasing interest to take advantage of the ability to manufacture complex parts in one piece, which in some case can be more cost and time effective than traditional manufacturing routes. For all the benefits of SLM there are some constraints on the process, these include porosity and defects in the materials such as ‘kissing bonds’, surface roughness, trapped powder and microstructural variation. These features of the processing route may have implications for component performance such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 723-734, October 11–14, 2016,
Abstract
View Paper
PDF
Work has been progressing over recent years to develop a standard test method for high temperature solid particle erosion testing. Early in 2015 this standard was published by ASTM as G211-14 Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. To support the development of this standard the European funded METROSION project has been conducting a comparison of different apparatus which employ different nozzle geometries, acceleration lengths, stand-off distances and heating and accelerating processes. The aim is to understand the influence these instrumental and experimental parameters have on the measured erosion rate and erosion mechanism. As part of this work three very distinct approaches have been compared using a common erodent and test pieces. Measurements have been performed at 600 °C with particle velocities of 50 to 320 m/s, using different stand-off distances, acceleration lengths and nozzle diameters for impact angles of 30 and 90°. This is the first time a comprehensive comparison of these parameters has been conducted and shows the relative influence of these experimental variables.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 400-411, October 22–25, 2013,
Abstract
View Paper
PDF
High-temperature solid particle erosion (SPE) is a major threat to efficiency in power plants and jet engines, potentially reducing turbine efficiency by 7-10% and causing significant CO 2 emissions. The sources of these particles vary widely, from volcanic ash in engines to fly ash in boilers and scale in turbines. While better surface engineering and coatings offer solutions, their development is hampered by a lack of standardized test methods and reliable models. To address this, the METROSION initiative aims to establish a comprehensive framework for characterizing the high-temperature SPE performance of new materials and coatings. This framework will require a step change in test methods and control, focusing on accurately measuring key parameters like temperature, flow rate, particle properties, and impact angles. This paper outlines the initiative’s goals, with a particular focus on the techniques used for in-situ measurements of temperature, particle velocity, and 3D shape/size.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 753-764, October 22–25, 2013,
Abstract
View Paper
PDF
Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored and offer the opportunity of simplification which enables the study of individual parameters through isolating them from other factors, such as temperature transients. The influence of pressure on the oxidation of power plant materials has always been considered to be less significant than the effects of temperature and Cr content, but still remains a subject of differing opinions. Experimental efforts, reported in the literature, to measure the influence of steam pressure on the rate of oxidation have not produced very consistent or conclusive results. To examine this further a series of high pressure steam oxidation exposures have been conducted in a high pressure flowing steam loop, exposing a range of materials to flowing steam at 650 and 700 °C and pressure of 25, 50 and 60 bar. Data is presented for ferritic-martensitic alloys showing the effect of increasing pressure on the mass change and oxide thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1244-1255, October 22–25, 2013,
Abstract
View Paper
PDF
A prototype small punch test rig has been developed to extend the range of data output. Through the introduction of a probe, vertical displacements can be measured across a region of the specimen underside. This information provides much greater understanding of the specimen deformation. Having displacement data at a series of measurement points also facilitates the calculation of strains across the sample. The probe can also be used during a test to provide time dependent data from small punch creep tests. The measured displacement data have been used in conjunction with FE analysis to determine a set of calibration curves for inferring strain at any given vertical displacement. Some creep strain data are also presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1256-1267, October 22–25, 2013,
Abstract
View Paper
PDF
Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising results. Improvements on the measurement resolution have been practically demonstrated with oxides down to 65 μm thickness being measured successfully.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2013) 171 (1): 23–25.
Published: 01 January 2013
Abstract
View article
PDF
The growth and exfoliation of thermally grown oxides, or scales, in steam power plants is a complex phenomenon that depends on alloy composition, microstructure (including surface condition), temperature, pressure, and plant operation. This article discusses the factors that contribute to oxide scale buildup in ultrasupercritical boiler tubes and ongoing efforts to mitigate problems due to steam-side oxidation and exfoliation in high-efficiency power plants.