Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
A.A. Ashari
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 259-262, May 25–29, 1998,
Abstract
View Paper
PDF
Thermal spray coatings are widely used for erosion resistance, but the relationship between the microstructure of the coatings and their erosion resistance is not well understood. In this paper the performance of several commonly used coatings at ambient and elevated temperatures is reviewed in light of the coatings' structure and compared with a new coating. Two high temperature industrial applications, solid particle erosion in steam turbines and alumina-based erosion have been chosen to illustrate the significance of a coating's structure on its performance.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1255-1258, May 25–29, 1998,
Abstract
View Paper
PDF
Fiber-reinforced polymer composites are an important class of structural materials, offering high strength-to-weight ratios and high rigidities. For many applications, however, their wear resistance is less than desirable. Wear-resistant thermal spray coatings have the potential to improve the surface properties of fiber-reinforced polymer composites, although some require the application of a bond coat to achieve sufficient adhesion. The present study was conducted to find acceptable bond coat materials and compare their performance. Materials such as polyamides, polyimides, polyether-ether-ketone, or simply aluminum or nickel were found to be suitable bond coats for many composite substrates.