Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. M. Mounce
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 7-11, October 30–November 3, 2022,
Abstract
View Paper
PDF
One approach for finding faults in integrated circuits (ICs) is magnetic imaging, where we map the magnetic fields emitted by internal currents in the device and use this knowledge to infer the current paths and fault locations. This gives us access to information about the IC internal properties without needing voltage probes, as the magnetic fields are unimpeded by opaque insulating and conducting layers. Magnetic imaging benefits from optimizing the spatial resolution and minimizing the standoff distance between the magnetic sensor and the circuit, motivating new experimental approaches that excel at these attributes. In this work, we apply the quantum diamond microscope (QDM) instrument to example failure analysis situations, building on our previous work using the QDM to interrogate the internal states of commercial ICs to achieve micrometer-scale spatial resolution and standoff distance.