Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. Lanzi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 260-265, June 2–4, 2008,
Abstract
View Paper
PDF
The most commonly used structural materials for blades and other high temperature components of gas turbines are nickel base superalloys. A TBC protection coating system consists of a top coat of yttria partially stabilized zirconia and an underlying bond coat, usually MCrAlY (where M stands for Ni, Co or a combination of both). MCrAlY is normally deposited by the thermal spray processes: air plasma spray (APS), vacuum plasma spray (VPS/LPPS) or high velocity oxygen fuel (HVOF). The adhesion between the bond coat and the substrate, and therefore of the whole thermal barrier system, strongly depends upon the surface roughness. A high level of roughness generally denotes better adhesion, especially with the HVOF thermal spray process, where it is a necessity. Generally the roughness is reached by means of grit blasting with an abrasive media; this results in a certain level of surface contamination due to the entrapment of abrasive particles. The aim of this work was to set up a new surface preparation process in order to obtain a completely clean surface with a suitable roughness, which can be coated afterwards with HVOF or VPS/LPPS thermal spray technology. The tests carried out by this process on turbine blades, coated with a HVOF system, led to obtaining a coating/base material interface without any contamination caused by the surface preparation.