Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. Friedrich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 1138-1147, May 11–14, 2015,
Abstract
View Paper
PDF
The current paper reports self-healing plasma sprayed Mgspinel (MgAl 2 O 4 ) coatings. The coatings were used for electrical insulation in high temperature fuel cells. A range of potential self-healing additives consisting of SiC+X (where X was BaO, CaO, ZnO, Y 2 O 3 , GeO 2 , Ta 2 O 5 , V 2 O 5 ) were characterized and SiC+Y 2 O 3 was initially selected for coating development. Coatings of spinel with 20wt% additive were developed using vacuum plasma spraying (VPS) or atmospheric plasma spraying (APS). In the developed coatings, self-healing was demonstrated after heat treatment at 1050°C in air for 10 hour. Thermophysical and thermomechanical properties of self-healing coatings were determined and compared to spinel coatings. Lastly, a modelling technique is presented to simulate the effective elastic moduli of the coatings. Numerical results based on microstructural simulations showed good agreement with experimental data.