Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
A. Di Gianfrancesco
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 9-23, October 22–25, 2013,
Abstract
View Paper
PDF
ENCIO (European Network for Component Integration and Optimization) is a European project aiming at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving environmental and economic sustainability of coal fired power plants and achieving successful deployment of carbon capture and storage technologies. The ENCIO-project is financed by industrial and public funds. The project receives funding from the European Community's Research Fund for Coal and Steel (RFCS) under grant agreement n° RFCPCT-2011-00003. The ENCIO started on 1 July 2011. The overall project duration is six years (72 months), to allow enough operating hours, as well as related data collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops are planned for 20.000 hours of operation at 700°C. The present paper summarizes the current status of the overall process design of the thick-walled components, the test loops and the scheduled operating conditions, the characterizations program for the base materials and the welded joints, like creep and microstructural analysis also after service exposure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 304-320, October 22–25, 2013,
Abstract
View Paper
PDF
Driven by the need to reduce CO 2 emissions through increased steam temperature and pressure in new power plants, research in Europe led to the development of enhanced high-chromium steels with improved creep resistance and service temperature stability. After years of development, Rotor E, a steel composition created during the COST programs (501, 522, and 536), has become a commercially available product. While traditionally forged and remelted using electroslag remelting (ESR), this paper demonstrates the successful production of large rotor components using a conventional process without ESR, achieved through tailored process control. This paper details Società delle Fucine's (SdF) current production of Rotor E using a conventional route based on ladle furnace and vacuum degassing, as well as the mechanical and creep behaviors of the resulting forged products. Additionally, SdF produced a prototype FB2 rotor using a conventional process. FB2, a 10% Cr steel containing cobalt and boron but lacking tungsten, emerged from the COST 522 program as the best candidate for scaling up from a laboratory experiment to a full-sized industrial component. Notably, the addition of boron effectively improved the microstructure's stability and consequently enhanced the creep resistance of these new, advanced martensitic steels. Finally, the paper will present updates on the long-term characterization program for the FB2 steel trial rotor.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1268-1282, October 22–25, 2013,
Abstract
View Paper
PDF
Alloy 718, widely used for its high-temperature performance in various applications, is being investigated for use in advanced power plants. Driven by the need for efficiency improvements, these plants demand higher temperatures and pressures, putting significant stress on critical components like boiler tubes and turbines. With existing steels and alloys struggling at such high temperatures, researchers are exploring alternatives. New generation plants target steam turbine inlet temperatures of 720°C and pressures of 350MPa, necessitating superalloys for high- and intermediate-pressure rotor sections. The Thermie Advanced project explored the potential of 718 for these applications. A trial rotor disk, forged using advanced processes, underwent a novel heat treatment to enhance microstructural stability and improve creep behavior. Ongoing creep tests exceeding 100,000 hours suggest a potential 50°C increase in the operational limit compared to standard 718. This 12-year research effort holds promise for utilizing 718 in forged components of advanced ultra-supercritical power plant steam turbines, potentially operating up to 700°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 127-139, August 31–September 3, 2010,
Abstract
View Paper
PDF
ASTM Grade 23 is a 2.25Cr-0.3Mo-1.5W-V-Nb-B steel widely used for the fabrication of boiler components of the most recent ultra super critical power plants; it combines high creep resistance, enhanced oxidation and corrosion resistance and good weldability. Microstructural, mechanical, and creep properties of seamless tubes and pipes after normalizing and tempering heat treatment are compared with those obtained after cold bending and hot induction bending. The creep resistance is obtained through the precipitation of fine carbides after tempering. A broad program of TEM investigations on crept samples has been carried out in order to assess the evolution of the microstructure and its phases after long term high-temperature exposure, in terms of chemical composition, size and distribution of precipitates.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 342-360, August 31–September 3, 2010,
Abstract
View Paper
PDF
Research conducted under European COST programs has demonstrated the beneficial role of boron in enhancing the microstructural stability and creep performance of new martensitic steels. The FB2 steel (a 10%Cr steel containing Co and B, without W) emerged as the most promising candidate and was successfully scaled up to a full industrial rotor component by Società delle Fucine. Extensive creep testing, now reaching 50,000 hours, indicates an improvement of 15-20 MPa over Grade 92 at 600°C for 100,000 hours. STEM and X-ray analysis of long-term aged specimens confirmed that boron significantly enhances precipitate stability compared to Grade 91 and 92 steels, validating its role as a creep-strengthening element and stabilizer of carbides and martensitic structure.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1071-1085, October 25–28, 2004,
Abstract
View Paper
PDF
TenarisDalmine, in collaboration with CSM, developed and characterized ASTM Grade 91 steel tubes and pipes for high-temperature boilers in ultrasupercritical power plants. This paper details the mechanical properties of both untreated and long-term exposed tubes. Extensive creep testing allowed extrapolation of stress values for rupture in 100,000 hours (93 MPa at 600°C) and 1% elongation in 250,000 hours (83 MPa at 600°C), satisfying ECCC and TÜV requirements. Additionally, STEM analysis investigated microstructure and precipitate evolution after long-term exposure, revealing changes in precipitate chemistry, size, and distribution.