Skip Nav Destination
Close Modal
Search Results for
strain rate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 830 Search Results for
strain rate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 528-534, April 29–May 1, 2024,
... of particle compression have been made to understand the deformation behavior of a particle. However, the deformation behavior of particle under controlled load and precise and high strain rate is yet to be studied. Here, we show the oxide layer fracture pattern and recrystallization regime under controlled...
Abstract
View Paper
PDF
The deformation behavior of particles plays a significant role in achieving adhesion during cold spray. The deformation behavior of the particles is associated with the fracture of the oxide layer and recrystallization, which are the key elements of the quality of cold spray. Studies of particle compression have been made to understand the deformation behavior of a particle. However, the deformation behavior of particle under controlled load and precise and high strain rate is yet to be studied. Here, we show the oxide layer fracture pattern and recrystallization regime under controlled load with a precise and high strain rate. We found that the cracks in the oxide layer initially appeared on the equator of the particle and propagated towards the edge of the top surface. Meanwhile, on the top surface, the circumferential crack was developed. On the other hand, the nanoindentation result showed that the compressed particle under a high strain rate has an unusual load-displacement behavior. Our results demonstrate that the oxide layer fracture behavior corresponds to the adhesion mechanism suggested by previous studies. Our study also revealed that recrystallization takes place within the particle under a high strain rate. We anticipate this finding to give a general insight into the deformation behavior of particles during cold spray. For instance, since the recrystallization behavior at a given strain rate can be predicted through this study, the resultant grain size and shape, which is associated with mechanical properties, can also be predicted. Furthermore, the amount of strain and strain rate to form optimal adhesion can be evaluated.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 371-374, May 7–10, 2018,
... Abstract The cold spray deposition mechanism of Ultra-High Molecular Weight Polyethylene (UHMWPE) requires a detailed understanding of strain rate sensitivity of UHMWPE. The yield and flow in UHMWPE are complex and sophisticated compared to metals due to their dependency on time, temperature...
Abstract
View Paper
PDF
The cold spray deposition mechanism of Ultra-High Molecular Weight Polyethylene (UHMWPE) requires a detailed understanding of strain rate sensitivity of UHMWPE. The yield and flow in UHMWPE are complex and sophisticated compared to metals due to their dependency on time, temperature, strain, strain-rate and the history of the processing. In this research work, powder-sintered UHMWPE of 10.5 Mg/mol was subjected to various strain-rates ranging from 10-2 s-1 to 103 s-1 via low compression strain-rate testing and Split Hopkinson Pressure Bar testing (SHPB). The experimental true stress-strain curves in compression of a sintered UHMWPE at pre-yield, yield point, and post-yield were analyzed. The pre-yield and yield point region, 10.5 Mg/mol UHMWPE exhibited an increase in the tangent modulus and the yield stress with an increase in strain rate. Further, the post-yield phenomenon in UHMWPE shows no apparent post-yield softening and shows an increase in the strain hardening with an increase in the strain-rate. The curves at increasingly higher strain rates showed an increasingly pronounced bi-linearity to its flow behavior with the rate of hardening increasing above 10~15% strain. Under the domain tested, the strain rate dependence for UHMWPE can be depicted by a logarithmic fit.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 9-18, May 5–8, 2003,
... strain rate deformation can be easily studied by explosive powder compaction. In this method, the powder is loaded by a shock wave and deformed under high strain rates. The bonding conditions of powder particles should be similar to those obtained in cold spraying. By a special design, shock loading...
Abstract
View Paper
PDF
In cold gas spraying, the powder is not molten before impact on the substrate. The bonding of the coating only depends on powder characteristics and impact conditions. To optimize coating microstructure and properties, spray conditions have to be tuned for a particular powder. The optimization procedure usually requires a systematic variation of spray conditions and an analysis of the sprayed coatings which is time consuming and costly. Therefore, alternative test methods which are less expensive and operate with similar load mechanisms on powder particles have to be developed. High strain rate deformation can be easily studied by explosive powder compaction. In this method, the powder is loaded by a shock wave and deformed under high strain rates. The bonding conditions of powder particles should be similar to those obtained in cold spraying. By a special design, shock loading in explosive powder compaction can cover a wide energy range in one single experiment. Therefore, the method appears feasible to determine the energy input required for successful bonding of particles. To evaluate the capability of the method, microstructural features of particle/particle interfaces are investigated and compared to those of cold sprayed coatings. In addition, the results can supply more information concerning the bonding mechanisms in cold gas spraying.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 383-388, May 4–6, 2022,
... the relationship between stress and strain under different conditions of temperature and strain rates. Most of these models fail, however, to describe the effect of the deformation mechanisms observed at ultra-high strain rates such as the viscous drag regime of dislocations or further the weak shock load regime...
Abstract
View Paper
PDF
Thermal spray technology keeps attracting several industries in both the manufacturing and repair sectors, thanks to its practicability and its reasonable processing time. Moreover, different kinds of materials can be successfully deposited to form coatings with potential excellent thermo-electro-mechanical properties. The resultant coating microstructure is completely different from the wrought powder material before the deposition process. In the case of metallic materials, the thermomechanical characteristics are quite dependent on the deposition conditions monitored from the spraying setup. One can mention gas temperature, impact velocity and angle, material combination, surface state, particles size, etc. Hence, one major factor which influences the final coating microstructural state is kinetic energy. In fact, in such processes where high velocity deposition is observed, intense grain refinement and sharp increase of the dislocation density are an outcome that is tightly related to high temperature and severe plastic deformation. Prediction of the mechanical properties of the produced coating is usually carried out using phenomenological models that describe very well the relationship between stress and strain under different conditions of temperature and strain rates. Most of these models fail, however, to describe the effect of the deformation mechanisms observed at ultra-high strain rates such as the viscous drag regime of dislocations or further the weak shock load regime, scenarios commonly observed in such processes. In the present paper, we present an enhanced physics-based model to describe the stress strengthening of metals upon impact and associated microstructure changes. We show that the model can accurately represent the desired effect of the dislocation drag. Modelling of the impact of a single copper particle onto a copper substrate is carried out to show the capability of the model to predict grain refinement and dislocation network modification.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 30-37, May 22–25, 2023,
... Abstract The Cold spray (CS) is a promising solid-state additive manufacturing method. The interesting physics involved in the CS process including cold, high strain rate, adiabatic and severe plastic deformation results in a unique and complex structure of CS deposits at different length...
Abstract
View Paper
PDF
The Cold spray (CS) is a promising solid-state additive manufacturing method. The interesting physics involved in the CS process including cold, high strain rate, adiabatic and severe plastic deformation results in a unique and complex structure of CS deposits at different length scales that directly determines the properties of the deposits. Therefore process- structure properties (performance) (PSP) linkages explorations are pivotal. Integrated computational materials engineering (ICME) methods in complement with experimental analyses are required to evaluate materials properties and behaviour in PSP links exploration. Finite element modelling is used to simulate the thermomechanical response of materials and evolution of field variables in CS, i.e stress, strain, strain rate, and temperature, at structural scales. Molecular dynamics modellings of nano-particle impact have provided useful insights into atomic-scale phenomena of individual particle impact while the modelling of microstructure evolution in micro and mesoscale has yet to be investigated. In this study, we developed and implemented a thermodynamic phase field simulation method to capture the structure evolution of CS composite Ni-Ti deposit upon post-spray heat treatment (PSHT) in microstructure scale. The external or internal stimuli such as heat and strain either generated in the system because of phase transformation or stored as internal energy upon CS process are accounted for. The interface mobility and microstructure development are calculated by minimization of Gibbs free energy of the system. The comparison of the simulated microstructure with experimental results confirms that the phase field modelling precisely predicts the microstructure evolution of the CS deposits upon PSHT.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 437-443, April 29–May 1, 2024,
... Abstract Cold spray (CS) is a progressive method for the deposition of metals and alloys whose principles involve considerable plastic deformation of the produced material at extreme strain rates. Positron annihilation spectroscopy (PAS) is an analytical technique capable of studying...
Abstract
View Paper
PDF
Cold spray (CS) is a progressive method for the deposition of metals and alloys whose principles involve considerable plastic deformation of the produced material at extreme strain rates. Positron annihilation spectroscopy (PAS) is an analytical technique capable of studying deformation on the atomic scale level, even in extremely deformed materials. In our study, the PAS method was used to characterize the deformation character at the lattice level and quantify the open-volume defects in four cold sprayed metals: Al, Cu, Ni, and Ti. As counterparts, bulk samples of these materials with ultrafine-grained structures were also produced by high-pressure torsion (HPT), a process exceeding cold spray in the total deformation, but having several orders of magnitude smaller strain rates, and by a traditional cold rolling process. The results show that the CS and HPT processes lead to the formation of similar lattice defects (dislocations and vacancy clusters), and both exhibit significantly higher dislocation densities than conventionally cold-rolled materials. Further, the vacancy clusters present in CS and HPT materials were not present in the rolled counterparts due to the lower vacancy production rate.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 232-238, May 2–4, 2005,
..., the critical velocity is in the range of 200 – 1200 m/s. In analogy with explosive welding, bonding in Cold Spraying is associated with adiabatic shear instabilities caused by high strain rate deformation during impact. Numerical and experimental methods are developed to investigate the influence of impact...
Abstract
View Paper
PDF
In Cold Spraying, bonding occurs when the impact velocities of particles exceed a critical value. This critical velocity depends not only on the type of spray material, but also on the powder quality, particle size and the particle impact temperature. For metallic materials, the critical velocity is in the range of 200 – 1200 m/s. In analogy with explosive welding, bonding in Cold Spraying is associated with adiabatic shear instabilities caused by high strain rate deformation during impact. Numerical and experimental methods are developed to investigate the influence of impact conditions and related phenomena on the coating quality. For a deeper understanding of impact phenomena and coating formation, the particle impact was modelled by using the finite element software ABAQUS/Explicit. The numerical analyses indicate shear instabilities localized to the particle surfaces, and thus provide a basis for the calculation of critical velocity in terms of materials properties and process parameters. In addition, modelling is used to obtain information about the effect of process parameters on the bonding quality. For most materials, high-strain-rate data are not available. For a quantitative analysis, therefore, the respective materials behaviour was investigated through individual spraying experiments, which were complemented by additional relevant experiments such as impact tests or explosive powder compaction. In this way, impact dynamics, bonding mechanism and critical velocities could be linked. This type of analysis was proved as a powerful tool to reduce the number of experiments for the optimisation of coating quality in Cold Spraying and also to provide a broader overview of the process.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 256-260, May 24–28, 2021,
... Abstract Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process, which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study, an anisotropic strain gradient plasticity model (SGP...
Abstract
View Paper
PDF
Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process, which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study, an anisotropic strain gradient plasticity model (SGP) is presented to predict materials behavior in CS process. The enhanced dislocation densities produced throughout particle deformation affect coating material properties and modify their thermodynamic characteristics and kinetics of resistance to plastic deformations. This study also demonstrates that the SGP model can describe the experimentally observed trends and account for homogenization of the accumulated strains under dynamic recrystallization conditions. The evolution of statistically stored dislocation density through the characteristic material length scale parameter is in good agreement with experimental results and data reported by other research groups. The proposed SGP modeling is suggested as an express method to evaluate the advanced coating and additively manufactured materials, and powder feedstock used in thermal spray and 3D manufacturing applications.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 243-248, May 4–7, 2009,
... Abstract This study investigates microstructural alterations in copper powder during cold spraying. A highly nonhomogeneous structure was observed with average strains of almost 50% close to the interface. Large strains and high strain rates resulted in significant grain refinement...
Abstract
View Paper
PDF
This study investigates microstructural alterations in copper powder during cold spraying. A highly nonhomogeneous structure was observed with average strains of almost 50% close to the interface. Large strains and high strain rates resulted in significant grain refinement and the formation of sub 100-nm grains. Deformation occurred by slip and twinning, the latter promoted by impurities in the copper feedstock. Thin foils from the deposits were studied by TEM analysis and cross-sections of deformed particles were made and examined using FIB-SEM techniques.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 712-719, June 2–4, 2008,
... Abstract In cold spraying, the high strain rate plastic deformation during particle impact leads to a local temperature rise at the particle/substrate interface. This gives rise to thermal softening and thus further strain and heat generation, finally resulting in adiabatic shear instabilities...
Abstract
View Paper
PDF
In cold spraying, the high strain rate plastic deformation during particle impact leads to a local temperature rise at the particle/substrate interface. This gives rise to thermal softening and thus further strain and heat generation, finally resulting in adiabatic shear instabilities, which are necessary to supply sufficient heat for successful bonding of the particles. These adiabatic shear instabilities can only occur, if a critical impact velocity is exceeded. A further increase of the impact velocity beyond this critical velocity continuously increases the fraction of well-bonded interfaces up to 95%, thus improving mechanical performance of the coatings. However, at far too high impact velocities, the efficiency again decreases and then changes to erosion due to hydrodynamic penetration. This erosion velocity is approximately two to three times higher than the critical velocity. The optimum velocity range between critical and erosion velocity is defined as “window of deposition”. Both critical and erosion velocity depend on the spray material properties, but also on particle impact temperature and particle size. Furthermore, they are also influenced by the powder purity. This study demonstrates the previously mentioned effects by calculations and experimental investigations. The presented link between fluid dynamics and impact dynamics enables to predict optimum spray parameters as well as the process effectiveness and resulting coating properties for certain cold spray conditions. Following this strategy, it was possible to increase the ultimate cohesive strength of cold-sprayed copper coatings from 80 MPa to more than 400 MPa, using nitrogen as process gas. In the annealed state, the ductility of these coatings corresponds to annealed bulk material. The overall optimization strategy is applicable to a wide variety of other spray materials. These developments should boost several new cold spray applications.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 627-634, May 24–28, 2021,
... to determine strain rate hardening coefficients for the Johnson-Cook model. cold spray coating finite element method laser shock processing microcompression testing Thermal Spray 2021: Proceedings from the International Thermal Spray Conference Copyright © 2021 ASM International® May 24 28, 2021...
Abstract
View Paper
PDF
In cold spray, particles undergo large plastic deformation upon impact in a rapid dynamic regime (up to 109 s-1) at solid state. The simulation of this impact is key to understanding the cold spray process. In this study, an approach based on laser shock and micro-compression testing was developed to characterize the mechanical behavior of powders and fit parameters of the Johnson-Cook material behavior model. In situ micro-compression particle testing was performed in a SEM equipped with a microindentation stage. From subsequent FEM simulations of the test, static coefficients of the Johnson-Cook model were identified. A laser shock powder launcher (LASHPOL) was also developed to accelerate single particles and measure their corresponding velocity using high-speed imaging. In addition, image analysis of the particles before and after impact, together with FEM simulation, were used to determine strain rate hardening coefficients for the Johnson-Cook model.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 846-852, May 26–29, 2019,
... Abstract In this study, finite element models are used to simulate the impact of porous WC-Co and Al particles cold sprayed onto substrates of the same materials. Effects of high strain rate, heat generation due to plasticity, interfacial friction, heat transfer, and material damage and failure...
Abstract
View Paper
PDF
In this study, finite element models are used to simulate the impact of porous WC-Co and Al particles cold sprayed onto substrates of the same materials. Effects of high strain rate, heat generation due to plasticity, interfacial friction, heat transfer, and material damage and failure are taken into account as are differences in the initial kinetic energy and strength of the materials. It was found that the influence of porosity increases with impact velocity and that the pores channel stress waves in unique ways not observed for solid particles. The results suggest that using porous particles for solid-state consolidation, as in cold spraying, could have advantages in terms of energy dissipation, although further investigation is required.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 510-514, May 21–24, 2012,
... Abstract Pure Al coatings were fabricated on Cu substrates via kinetic spraying for double-layered Cu liner. The coatings need to endure the high strain rate severe plastic deformation during explosion, in this study, the process optimization of Al deposition was initiated with a definition...
Abstract
View Paper
PDF
Pure Al coatings were fabricated on Cu substrates via kinetic spraying for double-layered Cu liner. The coatings need to endure the high strain rate severe plastic deformation during explosion, in this study, the process optimization of Al deposition was initiated with a definition of “critical velocity” of Al particle in kinetic spraying on a basis of numerical modeling and computations using ABAQUS finite element codes. The simulation results revealed that the critical velocity of Al particle at room temperature (RT) was 780 m s -1 , and the critical velocity decreased as particle temperature increased. On the basis of simulation results, mechanical properties such as bond strength of the coatings formed under various process conditions were evaluated and compared. These properties were discussed in terms of the processing-structure-property relationships.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 409-416, May 28–30, 2001,
... was performed. The calculations allow a direct correlation between experimentally obtained deposition efficiencies and process parameters. Finite element modeling of the particle impact could relate successful bonding to high strain rate phenomena at the particle interface. In view of the above criteria...
Abstract
View Paper
PDF
In cold spraying, in contrast to thermal spraying the coating material is not melted prior to the impingement onto a substrate. The powder particles are accelerated to high velocities by a supersonic gas jet. Even though the particles are in a solid state, they form a dense and solid bonded coating upon impact. In order to form a dense coating with sufficient adhesion to the substrate, the particles have to reach a certain velocity before hitting the substrate. This velocity is characteristic of the coating material and also depends on the particle temperature. A variety of experiments have been carried out with copper as spay material in order to determine the critical velocity for solid bonding of particles onto the substrate. To investigate the effect of spray parameters and nozzle geometry on the velocity and temperature of the particles, computational fluid dynamics was performed. The calculations allow a direct correlation between experimentally obtained deposition efficiencies and process parameters. Finite element modeling of the particle impact could relate successful bonding to high strain rate phenomena at the particle interface. In view of the above criteria an optimization strategy for cold spray process can be developed.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 750-755, May 4–6, 2022,
... particles do not melt, but experience extremely high plastic strain rates, the cobalt matrix is fully molten in the conventional sintering process, allowing time enough for diffusion processes. HVAF is to be placed in between, since the deposition process is characterized by a moderate heat input, leading...
Abstract
View Paper
PDF
Both as bulk material and coatings, cemented carbides currently occupy very well-established market niches and exhibit a promising future thanks to the development of compositions and manufacturing parameters. Direct comparisons of the properties of both are found only very rarely in the literature, very likely because the fields of application are complementary to each other but keep mostly separated. The current work is intended to evaluate similarities and differences in terms of microstructure and properties for two submicron WC-12 wt.%Co coatings obtained by High Velocity Air Fuel (HVAF) and Cold Gas Spray (CGS), together with a conventional sintered part. Microstructural features are discussed according to the inherent characteristics of each processing method. This covers a wide range in terms of the mechanical and thermal stresses acting on the material. While in CGS, the impacting particles do not melt, but experience extremely high plastic strain rates, the cobalt matrix is fully molten in the conventional sintering process, allowing time enough for diffusion processes. HVAF is to be placed in between, since the deposition process is characterized by a moderate heat input, leading to partial and/or full melting of cobalt, followed by rapid cooling. The microstructure and phases of the deposited coatings and bulk are characterized by using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Electron Backscattered Diffraction (EBSD) investigations enable local phase distribution of Co and WC in the samples. The hardness of the alloy processed by the three different routes is investigated as well. Additionally, electrochemical corrosion measurements in NaCl media are presented to evaluate the facility for electrolyte penetration and how the degradation of the material is affected by its inherent microstructure.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 993-998, May 25–29, 1998,
... transition temperatures (DBBTs) were determined from tensile tests. Creep tests were performed on cylindrical specimens and on thin flat specimens. All the coatings were examined before and after testing. The two tested coatings induce a ductile/brittle transition. Strain rate has a great influence...
Abstract
View Paper
PDF
Two different coatings were studied in this work : vacuum plasma-sprayed NiCoCrAlYTa and electrodeposited NiCoCrAlYTa. These coatings were deposited on AM3 single crystal alloy. The tensile and creep properties of coated single crystal test specimens were investigated. Ductile-brittle transition temperatures (DBBTs) were determined from tensile tests. Creep tests were performed on cylindrical specimens and on thin flat specimens. All the coatings were examined before and after testing. The two tested coatings induce a ductile/brittle transition. Strain rate has a great influence on the transition temperature. The comparison between the two processes of deposition illustrates the strong influence of coating microstructure. A marked decrease in creep properties was observed for thin single crystal specimens but contrary to cylindrical specimens, the coating has a quite positive influence, so that the creep life of coated thin specimens is increased.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 85-90, May 22–25, 2023,
... were quantified. The results show that the extremely high strain rate in the cold spray process prevents recovery of vacancies by diffusion to sinks. The deformation-induced vacancies agglomerate into small vacancy clusters. Hence, metals deposited using CSAM contain not only dislocations but also...
Abstract
View Paper
PDF
Cold spray additive manufacturing technology (CSAM) is a progressive method of 3D print of metals and alloys. Its inherent work principles allow production of the components below the material melting points, thereby avoiding several undesired material degradation processes. Among other inherently associated phenomena, the work principles of CSAM involve extreme plastic deformation of the materials, triggering formation of several types of lattice defects. Positron annihilation spectroscopy (PAS) is an analytical technique capable of studying deformation on the atomic scale level, even in extremely deformed materials. In our study, the first historical analysis of CSAM materials by PAS was carried out. For the demonstration, four different base metals were selected (Al, Cu, Ni, Ti). For these, the character of dislocations and vacancies was observed and the respective densities were quantified. The results show that the extremely high strain rate in the cold spray process prevents recovery of vacancies by diffusion to sinks. The deformation-induced vacancies agglomerate into small vacancy clusters. Hence, metals deposited using CSAM contain not only dislocations but also vacancy clusters. Both kinds of defects were detected by positron annihilation spectroscopy.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 250-257, May 22–25, 2023,
... low melting temperature is an ideal model system to study phenomena associated with high strain rate deformation and local temperature distributions, both, in single impacts and thicker deposits. Bonding and recrystallization can be facilitated by covering selected wide parameter regimes in cold...
Abstract
View Paper
PDF
Tailoring strength and ductility in additive manufacturing or repair is key to successful applications. Therefore, cold spraying must be tuned for maximum amounts of well-bonded internal interfaces as well as sufficient softening of the highly workhardened deposit. Zinc (Zn) with its low melting temperature is an ideal model system to study phenomena associated with high strain rate deformation and local temperature distributions, both, in single impacts and thicker deposits. Bonding and recrystallization can be facilitated by covering selected wide parameter regimes in cold spraying. Despite the low temperatures, Zn single splats already show recrystallization at internal interfaces, the respective amounts then scaling with increasing process gas temperatures. At higher process temperatures, deposits are almost fully recrystallized. The recrystallization seems to improve bonding at internal and at deposit-substrate interfaces. Under optimum conditions, an ultimate deposit cohesive strength of up to 135 MPa and an elongation to failure of 18.4% are reached, comparable to that of laser-manufactured or bulk Zn parts. This demonstrates a welltuned interplay between high amounts of bonded interfaces and softening by recrystallization that allows for deriving bulk-like performance of cold sprayed material without additional posttreatments. Correlations between microstructures, mechanical properties, and fracture mechanisms supply information about prerequisites needed for reaching high ductility as obtained in damage and failure modes of deposits and bulk materials in global and local approaches.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 4-9, May 3–5, 2010,
... Abstract The processes of microstructural evolution in titanium during deposition by cold spray were investigated. Titanium particles underwent plastic deformation at very high strain rates, resulting in (a) extensive refinement and (b) large inhomogeneities in microstructure. There were large...
Abstract
View Paper
PDF
The processes of microstructural evolution in titanium during deposition by cold spray were investigated. Titanium particles underwent plastic deformation at very high strain rates, resulting in (a) extensive refinement and (b) large inhomogeneities in microstructure. There were large nanostructured areas (several micrometres in extent) with high dislocation densities and subgrain sizes less than 100 nm. Dense dislocation tangles and elongated subgrains were observed in other places. It is hoped that by further understanding the microstructural changes that occur during cold spray, improvements in mechanical properties may be realised.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 89-96, May 15–18, 2006,
... Abstract In cold spraying, bonding is associated with shear instabilities caused by high strain rate deformation during the impact. It is well known, that bonding occurs, when the impact velocity of an impacting particle exceeds a critical value. This critical velocity depends not only...
Abstract
View Paper
PDF
In cold spraying, bonding is associated with shear instabilities caused by high strain rate deformation during the impact. It is well known, that bonding occurs, when the impact velocity of an impacting particle exceeds a critical value. This critical velocity depends not only on the type of spray material, but also on the powder quality, the particle size and the particle impact temperature. Up to now, optimization of cold spraying mainly focused on increasing the particle velocity. The new approach presented in this contribution demonstrates capabilities to reduce critical velocities by well-tuned powder sizes and particle impact temperatures. A newly designed temperature control unit was implemented to a conventional cold spray system and various spray experiments with different powder size cuts were performed to verify results from calculations. Microstructures and mechanical strength of coatings demonstrate that the coating quality can be significantly improved by using well-tuned powder sizes and higher process gas temperatures. The presented optimization strategy, using copper as an example, can be transferred to a variety of spray materials and thus, should boost the development of the cold spray technology with respect to the coating quality.
1