Skip Nav Destination
Close Modal
Search Results for
high velocity air fuel spraying
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 986 Search Results for
high velocity air fuel spraying
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 1219-1224, September 27–29, 2011,
... Abstract The performance of a thermal barrier coating is influenced by the high temperature oxidation behavior of bond coat. In this paper, NiCoCrAlTaY bond coat was deposited by high velocity air-fuel (HVAF) spraying, and the microstructure and surface morphology of the bond coat before...
Abstract
PDF
The performance of a thermal barrier coating is influenced by the high temperature oxidation behavior of bond coat. In this paper, NiCoCrAlTaY bond coat was deposited by high velocity air-fuel (HVAF) spraying, and the microstructure and surface morphology of the bond coat before and after oxidation were examined. Results show that the HVAF sprayed NiCoCrAlTaY coating presented a dense microstructure and some partially melted particles in a near spherical morphology were deposited on the coating surface. A uniform α-Al 2 O 3 oxide was formed on the HVAF sprayed MCrAlY coating surface after the pre-oxidation treatment in an argon atmosphere. A small fraction of nodular-shaped mixed oxides was formed when the MCrAlY coating was oxidized at 1000°C for 100 h. The amount of the mixed oxides did not significantly increase after 200 h oxidation. The large particles on the bond coat surface maintained homogeneous α-Al 2 O 3 oxide scale in 200 h oxidation at 1000°C in air. A model is proposed to explain the formation of nodular-shaped mixed oxides.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 953-958, May 15–18, 2006,
... Abstract The fracture behavior of polymer coatings fabricated by low temperature high velocity air fuel (LTHVAF) spray was investigated. It was shown that the coatings were dense and had a mean bonding strength of 13.5 MPa. During the tensile stress process, the fracture occurred...
Abstract
PDF
The fracture behavior of polymer coatings fabricated by low temperature high velocity air fuel (LTHVAF) spray was investigated. It was shown that the coatings were dense and had a mean bonding strength of 13.5 MPa. During the tensile stress process, the fracture occurred in the interior of the coatings, which indicates that the cohesive strength within coatings is less than the bonding strength between the coatings and substrate. A significant amount of crazing and honeycombed holes existed in the fracture surface. Under a tensile stress, cracks initiated at porous defects in the coatings. Dispersed particles interrupted the crack expansion, and caused a change in direction of crack propagation.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 529-534, May 21–24, 2012,
... Abstract Recent developments of High-Velocity Air-Fuel (HVAF) spraying and blasting focused on a substantial increase of spray particles velocity. The efforts further improved coating quality, allowing deposition of metallic and carbide-base coatings non-permeable to gas at thickness as low...
Abstract
PDF
Recent developments of High-Velocity Air-Fuel (HVAF) spraying and blasting focused on a substantial increase of spray particles velocity. The efforts further improved coating quality, allowing deposition of metallic and carbide-base coatings non-permeable to gas at thickness as low as 40-50 micron. The coatings demonstrate low dissolved oxygen content, a favorable combination of high hardness and toughness. Coupled with the enhanced technological efficiency of modern HVAF equipment, this initiated not only the acceptance of HVAF technologies in established thermal spray markets in the oil and gas industry, but also the development and successful implementation of new coating applications. The examples are wear and corrosion resistant tungsten carbide-based coatings on hydraulics rods of dock cranes, corrosion resistant Ni-Cr-Mo-type coatings on vessels of sulfur removal equipment, tungsten carbide coatings on restriction grid plates and slide gates of catalyst towers, high-temperature erosion resistant chromium carbide- based coatings on thermowells and valve stems, wear and cavitation resistant Co-Cr-W-C-type and carbide coatings on housing wear rings and impeller hubs of high-temperature pumps.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 836-839, May 2–4, 2005,
... Abstract Based on the HVO-AF (High Velocity Oxygen-Air Fuel) thermal spray system, the Low Temperature High Velocity Air Fuel Spray was realized by additional liquid feed stocks. In this paper, the microstructure and characteristics of composite coatings sprayed by this spray technology were...
Abstract
PDF
Based on the HVO-AF (High Velocity Oxygen-Air Fuel) thermal spray system, the Low Temperature High Velocity Air Fuel Spray was realized by additional liquid feed stocks. In this paper, the microstructure and characteristics of composite coatings sprayed by this spray technology were analyzed. Composite powders were composed at three mass fractions, Fe, 5mass%Fe -polymer, 15mass%Fe-polymer. In the experiments, the coatings properties were tested. The results indicated that all the coatings microstructure is dense and low porosity; metal particles were dispersed with polymer in the coatings. There were little oxide phase in the coatings. The coatings were closely combined with substrate, the reflectance coefficient of 5mass%Fe-polymer composite coatings is better than others, the reflectance coefficient curve of the coatings is 2~6dB at 2~18GHz.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 809-813, May 14–16, 2007,
... Abstract In this paper, submicron α-Fe/nylon-12 microwave absorbing composite coatings were deposited by a Low Temperature High Velocity Air Fuel (LTHVAF) spraying technique. The microstructure and the electromagnetic parameters of coatings and powders were tested. The coatings are dense...
Abstract
PDF
In this paper, submicron α-Fe/nylon-12 microwave absorbing composite coatings were deposited by a Low Temperature High Velocity Air Fuel (LTHVAF) spraying technique. The microstructure and the electromagnetic parameters of coatings and powders were tested. The coatings are dense and have low porosity. The microwave reflectivity coefficient of the coatings was calculated with permeability and permittivity of the powders. It shows that there is a relationship between the mass fraction of composite powders and microwave absorption ability of coatings. At the threshold value, the composite coatings can absorb microwave strongly. When the coatings thickness increases, the minimal reflectivity coefficient moves to the low microwave frequency. There exists an appropriate coatings thickness in order to optimize the absorption of the microwave energy. The mass fraction and the thickness can affect the performance of composite absorber coatings.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 761-766, May 11–14, 2015,
... and electrochemical polarization test at room temperature. Optimization of coating tribological properties are discussed regarding the suitable selection of primary carbide size for different working load applications. brittle cracking corrosion test high-velocity air fuel spraying pin-on-disk wear test...
Abstract
PDF
Lowering the thermal energy and increasing the kinetic energy of sprayed particles by newly developed HVAF systems can significantly reduce material decarburization, and increases sliding wear and corrosion resistance of hard metal coatings, making HVAF coatings attractive both economically and environmentally over its HVOFs predecessors. Two agglomerated and sintered feedstock powder chemistries, respectively WC-Co (88/12) and WC-CoCr (86/10/4), with increasing primary carbides grain size from 0.2 to 4.0 microns, have been deposited by the latest HVAF-M3 process onto carbon steel substrates. Respective dry sliding wear behaviours and friction coefficients were evaluated at room temperature via Ball-on-disk (ASTM G99-90) wear tests against Al2O3 counterparts, and via Pin-on-disk (ASTM G77-05) wear tests against modified martensitic steel counterparts in both dry and lubricated conditions. Sliding wear mechanisms, with formation of wavy surface morphology and brittle cracking, are discussed regarding the distribution and size of primary carbides. Corrosion behaviours were evaluated via standard Neutral Salt Spray (NSS), Acetic Acid Salt Spray (AASS), accelerated corrosion test and electrochemical polarization test at room temperature. Optimization of coating tribological properties are discussed regarding the suitable selection of primary carbide size for different working load applications.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 301-305, May 28–30, 2001,
... Abstract The present work has the purpose of comparing different thermal spraying techniques, namely axial plasma spray, standard air plasma spray and high velocity oxygen flame (HVOF), for depositing metal matrix composites, in this case chromium carbide nickel-chromium based. The quality...
Abstract
PDF
The present work has the purpose of comparing different thermal spraying techniques, namely axial plasma spray, standard air plasma spray and high velocity oxygen flame (HVOF), for depositing metal matrix composites, in this case chromium carbide nickel-chromium based. The quality of the coatings deposited by these three techniques has been assessed in terms of structural characteristics (porosity, oxide concentration, unmelted particles presence, etc.) and of mechanical characteristics (hardness, adhesion, etc.) as well as surface morphology. A specific efficiency test has been carried out to compare the three examined technologies. The results of the present study indicate that, against a slightly decrease in the quality of the film in terms of structural and mechanical properties, axial plasma sprayed coatings can be sprayed with a higher efficiency in comparison to the traditional technologies.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 789-791, May 5–8, 2003,
... Abstract According to aerodynamics and thermodynamics, High Velocity Oxygen/Air Fuel Spray system was successfully developed. The system introduced stream atomization, high-pressure combustion chamber, converging/diverging nozzle, spark plug ignition, radial powder injection with reliable...
Abstract
PDF
According to aerodynamics and thermodynamics, High Velocity Oxygen/Air Fuel Spray system was successfully developed. The system introduced stream atomization, high-pressure combustion chamber, converging/diverging nozzle, spark plug ignition, radial powder injection with reliable operation. The system has the function of both of HVOF and HVAF. It can not only use air and oxygen to spray respectively, but also the mixture of air and oxygen, so the velocity and temperature of the flame can be changed by adjusting the flux of air and oxygen. The system can produce high quality cermets, metal and alloy coatings for the adjustable of flame velocity and temperature.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 984-989, May 4–6, 2022,
... process can be achieved. More importantly, the model can be used as a tool for efficient process development. activated combustion-high-velocity air-fuel spraying cobalt-nickel-chromium-aluminum-yttrium alloys computational fluid dynamics particle flight properties Thermal Spray 2022...
Abstract
PDF
A computational fluid dynamics model for understanding the HVAF process and the influence of the process parameters on the particle flight properties is investigated. Achieving this objective involves a novel approach to modeling the HVAF process with pressure inlet boundary conditions and integration of the mixing chamber. The study comprises the prediction of the flow fields described by a set of equations consisting of continuity, momentum, energy, and species transport. These equations are then solved with realizable k-ε turbulence model, a two-step chemistry model and eddy dissipation model to simulate the combustion reaction. Consequently, the interaction between the CoNiCrAlY alloy particles and the flow is modeled using a Lagrangian approach considering the forces acting on the particles and the heat transfer. The results show that the combustion chamber pressure is mainly affected by the compressed air and propane parameters. Furthermore, the flight behavior of the smaller particles is significantly influenced by the gas flow, while the larger particles tend to maintain their momentum and energy. Through the simulation model, an in-depth process understanding of the HVAF process can be achieved. More importantly, the model can be used as a tool for efficient process development.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 837-839, May 5–8, 2003,
... Abstract The paper analyzed microstructure and property of WC-17Co coatings sprayed by High Velocity Oxygen/Air Fuel Spray under three kinds of spray conditions, which are HVOF, HVO-AF and HVAF. Coatings bond well with the substrate. The average bonding strength exceeds 70Mpa. Coatings...
Abstract
PDF
The paper analyzed microstructure and property of WC-17Co coatings sprayed by High Velocity Oxygen/Air Fuel Spray under three kinds of spray conditions, which are HVOF, HVO-AF and HVAF. Coatings bond well with the substrate. The average bonding strength exceeds 70Mpa. Coatings are dense and hard, and the average porosity is about 1%. Microhardness of coatings is between HV1000 0.2 and HV1200 0.2 . Coatings are mainly composed of WC with little W 2 C and Co 3 W 3 C. With the increasing of Nitrogen, decarburization of WC was reduced.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 689-692, May 15–18, 2006,
... Abstract In order to improve the wear resistance and service life of the copper, the composite coating consisting of a Ni-base self-fluxing alloy (NiCrWB+50%Al 2 O 3 ) and WC (WC-12%Co) alloy were sprayed on a copper substrate using High Velocity Air Fuel(HVAF). The coating could meet...
Abstract
PDF
In order to improve the wear resistance and service life of the copper, the composite coating consisting of a Ni-base self-fluxing alloy (NiCrWB+50%Al 2 O 3 ) and WC (WC-12%Co) alloy were sprayed on a copper substrate using High Velocity Air Fuel(HVAF). The coating could meet the operating requirements including high hardness, good wear resistance and low cost. The Ni-base composite coating was analyzed by means of optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results indicated that the structure of coating was composed of melted particles and partly unmelted round particles of Ni-base alloy, and WC particle. Only a small proportion of the Al 2 O 3 particles were retained in the coating. The phases in the coating consisted of γ-Ni, WC and a little Ni 3 B. Amorphous structures appeared and some Al 2 O 3 phase existed. The adhesion strength between coating and copper substrate was more than 50MPa. Wear results showed that the Ni-base composite coating exhibited better wear resistance than the coating with no WC particles.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1352-1355, June 2–4, 2008,
... production costs are 2-2.5 times less. With regard to typical steel-making process parts some investigations results and examples of HVAF restoration at Joint Stock Company "Mashprom" are represented. corrosion test high velocity air fuel spray coating high velocity oxygen fuel spray coating...
Abstract
PDF
A significant group of steel-making process parts is exposed to high contact pressure, shock abrasive wear and elevated temperature. High productivity repair techniques are necessary because of the large size of the parts. Analysis of coating metallographic investigations, wear and corrosion test results, full-scale tests shows that restoration of base share of these parts is possible by High Velocity Oxygen Fuel / High Velocity Air Fuel (HVOF/HVAF) process. Comparison of manufacture's data has showed that HVAF excels HVOF alternatives noticeably at productivity. At the same time production costs are 2-2.5 times less. With regard to typical steel-making process parts some investigations results and examples of HVAF restoration at Joint Stock Company "Mashprom" are represented.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 331-334, May 3–5, 2010,
... by the addition WC-12Co obviously. The best wear resistant is obtained when optimum WC-12Co content is added. alumina coating ceramic powder copper high velocity air-fuel spraying microstructure nickel coating tungsten carbide-cobalt coating wear resistance International Thermal Spray Conference...
Abstract
PDF
In order to explore wear properties of Ni-based coating on the copper substrate, the coatings with different composition were designed. Ni-based coating, Ni-based/Al 2 O 3 and Ni-based/Al 2 O 3 /WC coatings were sprayed by HVAF on the copper substrates. Wear properties of different composite coating were measured at different loads at room temperature. The experimental results indicate that all the coatings have high wear resistance. Adding Al 2 O 3 in sprayed powders has little effect on the microstructures and wear properties of coating. The wear resistant is improved by the addition WC-12Co obviously. The best wear resistant is obtained when optimum WC-12Co content is added.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 164-171, May 4–6, 2022,
... Abstract High-velocity air-fuel (HVAF) is a combustion process that allows solid-state deposition of metallic particles with minimum oxidation and decomposition. Although HVAF and cold spray are similar in terms of solid-state particle deposition, slightly higher temperature of HVAF may allow...
Abstract
PDF
High-velocity air-fuel (HVAF) is a combustion process that allows solid-state deposition of metallic particles with minimum oxidation and decomposition. Although HVAF and cold spray are similar in terms of solid-state particle deposition, slightly higher temperature of HVAF may allow further particle softening and in turn more particle deformation upon impact. The present study aims to produce dense Ti-6Al-4V coatings by utilizing an inner-diameter (ID) HVAF gun. The ID gun is considered a scaled-down version of the standard HVAF with a narrower jet, beneficial for near-net-shape manufacturing. To explore the potential of the ID gun in the solid-state deposition process, an investigation was made into the effect of spraying parameters (i.e., spraying distance, fuel pressure, and nozzle length) on the characteristics of in-flight particles and the attributes of the as-fabricated coating such as porosity, oxygen content, and hardness. Using online diagnostics to monitor temperature and velocity of in-flight Ti-6Al-4V particles is challenging due to exothermic oxidation reaction of fine particles, while larger particles are too cold to be detected from their thermal emission. However, DPV diagnostic system was successfully employed to differentiate the non-emitting solid particles from the burning ones. It was found that increasing air and fuel pressure of the ID-HVAF jet led to an increase of the velocity of the in-flight particles, and resulted in improved density and hardness of the as-sprayed samples. However, increasing the spraying distance had a negative effect on the density and hardness of the deposits. It was also observed that the phases of the Ti-6Al-4V deposits were altered by producing vanadium oxide due to the high temperature of the spray jet.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 946-950, June 7–9, 2017,
... resistance of the coatings based on the kinetic studies had the following ranking (from the best to the worst): NiAl >NiCr> NiCrAlY> NiCrMo. boilers corrosion test high-velocity air fuel spraying nickel coating oxidation resistance potassium chloride-induced corrosion Thermal Spray...
Abstract
PDF
It is well known that the presence of KCl deposited on superheater tubes in biomass- and waste-fired boilers leads to a severe corrosion and premature damage. In order to protect such critical components which are routinely exposed to aggressive environments, thermal sprayings are frequently proposed as a potential solution. By virtue of the techno-commercial benefits that provides as a direct outcome of its ability to cost-effectively deposit coatings virtually free of porosity and in situ formed oxides, the high velocity air-fuel (HVAF) process offers a particularly attractive approach. In the present work, the influence of KCl on the oxidation behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y, and Ni21Cr9Mo) has been investigated. The coatings were deposited onto specimens of 16Mo3 steel, a widely used boiler tube material. High temperature corrosion tests were carried out in ambient air at 600°C, with 0.1 mg/cm2 KCl being sprayed onto the samples prior to the exposure. Uncoated substrates and an identical test environment without KCl were used as reference. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated damage to the coatings. It was further revealed that the alumina-forming NiAl coating was capable of forming a more protective oxide scale compared to other chromia and mixed-oxide scale forming coatings. In general, the oxidation resistance of the coatings based on the kinetic studies had the following ranking (from the best to the worst): NiAl >NiCr> NiCrAlY> NiCrMo.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 381-385, June 2–4, 2008,
... strength test bonding strength corrosion resistance energy-dispersive spectroscopy high-velocity air fuel spraying light microscopy salt spray test scanning electron microscopy X-ray diffraction zinc-aluminum coating International Thermal Spray Conference & Exposition E. Lugscheider, editor, p...
Abstract
PDF
Traditional metal spraying techniques, which have been used in industry for decades, such as Wire Flame and Twin-Wire Arc are classified as low velocity processes because the sprayed material is conveyed by compressed air having subsonic velocity. In order to improve the bond strength, HVAF was applied for thermal spraying for anticorrosion protection. In this paper, zinc-aluminium (Zn-Al) coatings thermal sprayed using the HVAF method are analysed. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, a high bonding strength, low presence of oxides and high resistance to corrosion. This is attributed to high flow/particle velocities and relatively low combustion temperatures of HVAF in comparison with other thermal spraying technologies. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional Wire Flame and Twin-Wire Arc methods for thermal spraying of Zn-Al coatings.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 718-721, May 4–7, 2009,
... Abstract In this research, a low cost high-velocity air-fuel (HVAF) system was developed and applied for thermal spraying of WC-Co coatings. The resulting coatings were evaluated using optical and scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microhardness measurements...
Abstract
PDF
In this research, a low cost high-velocity air-fuel (HVAF) system was developed and applied for thermal spraying of WC-Co coatings. The resulting coatings were evaluated using optical and scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microhardness measurements. The quality of sprayed WC-Co coatings shows that the developed HVAF system can be an alternative to the existing HVOF with substantial savings on operating costs.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1306-1310, May 2–4, 2005,
... with computational fluid dynamic software, namely STAR-CD. The developed computational model can be applied to HVAF systems used for thermo-abrasive blasting and thermal spraying. computational modeling high-velocity air-fuel spray coating thermo-abrasive blasting gun Thermal Spray 2005: Proceedings from...
Abstract
PDF
In the last few years, a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet to propel abrasive particles. The thermo-abrasive blasting gun, also called a thermal gun, is based on the principles of High Velocity Air Fuel (HVAF) processes. Some empirical data is available on thermo-abrasive blasting method and systems. To effectively improve on nozzle design and productivity, modelling of the thermo-abrasive blasting process was required. This paper describes the computational modelling of the thermal gun with computational fluid dynamic software, namely STAR-CD. The developed computational model can be applied to HVAF systems used for thermo-abrasive blasting and thermal spraying.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 551-555, May 10–12, 2004,
... Abstract In Activated Combustion HVAF process, coatings are formed of powder particles, heated and accelerated by high-velocity jet of air and gaseous fuel combustion products. A distinguished feature of the process is that spray particles are heated below their melting point while accelerated...
Abstract
PDF
In Activated Combustion HVAF process, coatings are formed of powder particles, heated and accelerated by high-velocity jet of air and gaseous fuel combustion products. A distinguished feature of the process is that spray particles are heated below their melting point while accelerated to velocity well above 700 m/s. Such spray scheme appeared beneficial for deposition of cemented carbides, in particular, WC-based composites. Dense, practically non-oxidized neither heat-deteriorated coatings were formed. Spray rates from 1 to 25 kg/hr were achieved without decline of coating quality or deposition efficiency. Specific coating structure resulted in noticeably improved resistance to fatigue at high level of stresses.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 644-648, June 7–9, 2017,
... the durability of degradation-prone boiler components and are already used, further improvements in their performance are continuously sought. High-velocity air fuel (HVAF) coatings are promising in this context. In the present work, isothermal oxidation behavior of a candidate HVAF-sprayed Ni21Cr was studied...
Abstract
PDF
Reducing CO 2 emissions from power generation plants is intimately related to enhancing their thermal efficiency, which can be achieved by increasing the temperature/pressure of steam. However, any increase in steam temperature is inevitably accompanied by accelerated oxidation of boiler components. The use of renewable fuels such as biomass increases the problem by introducing a number of corrosive compounds into the boiler environment, resulting in more rapid degradation of components. Although thermal sprayed coatings are technocommercially attractive solutions for augmenting the durability of degradation-prone boiler components and are already used, further improvements in their performance are continuously sought. High-velocity air fuel (HVAF) coatings are promising in this context. In the present work, isothermal oxidation behavior of a candidate HVAF-sprayed Ni21Cr was studied in N 2 + 5% O 2 + 20% H 2 O at 600°C for 168h. The oxide scale growth mechanisms were studied by BIB/SEM/EDX to evaluate the effectiveness of the coatings. It was found that the water vapor effect is insignificant due to the Cr reservoir in the Ni21Cr coating, which yielded enhanced oxidation protection by forming nano-scale Cr 2 O 3 .