Skip Nav Destination
Close Modal
Search Results for
feedstock materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 2026 Search Results for
feedstock materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 880-885, May 21–24, 2012,
... Abstract New developments in the field of thermal spraying systems (increased particle velocities, enhanced process stability) are leading to improved coating properties. At the same time innovations in the field of feedstock materials are supporting this trend. The combination of modern...
Abstract
View Paper
PDF
New developments in the field of thermal spraying systems (increased particle velocities, enhanced process stability) are leading to improved coating properties. At the same time innovations in the field of feedstock materials are supporting this trend. The combination of modern thermal spraying systems and new material concepts has led to a renaissance of Fe-based feedstocks. Using modern APS or HVOF systems, it is now possible to compete with classical materials for wear and corrosion applications like Ni basis (e.g. NiCrBSi) or metal matrix composites (MMC, e.g. WC/Co or Cr 3 C 2 /NiCr). The work described in this paper focuses on that combination and intends to give an analysis of the in-flight particle and spray jet properties achievable with two different modern thermal spraying systems (kerosene driven HVOF system K2, 3- cathodes APS system TriplexPro-200/-210) using Fe-based powders. The velocity fields are measured with the Laser Doppler Anemometry (LDA). Additionally, resulting coatings are analyzed metallographically with regard to their properties and a correlation with the particle in-flight properties is given. The experimental work is accompanied by computational fluid dynamics (CFD) simulations of spray jet and particle velocities, leading to a comprehensive analysis and characterization of the achievable particle properties with state-of-the-art HVOF and APS systems.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 558-569, April 29–May 1, 2024,
... in room-temperature applications. Their lightweight nature and high temperature capability make them an attractive alternative to WC-based alloy coatings and hard Cr plating coatings. The objective of this study is to develop optimal Cr 3 C 2 -NiCr coatings by comparing different feedstock materials...
Abstract
View Paper
PDF
Nowadays, Cr 3 C 2 -based cermet coatings by HVOF process are widely recognized for their corrosion and erosion resistance, particularly at high temperatures. These coatings also offer the advantage of being lightweight and exhibiting superior wear, corrosion and cavitation resistance in room-temperature applications. Their lightweight nature and high temperature capability make them an attractive alternative to WC-based alloy coatings and hard Cr plating coatings. The objective of this study is to develop optimal Cr 3 C 2 -NiCr coatings by comparing different feedstock materials, including feedstock with nanocrystalline and/or submicron sized Cr 3 C 2 phases. The focus of the investigation is on understanding the impact of feedstock features such as particle size, morphology, and carbide sizes, as well as sliding abrasive wear conditions (specifically SiC grit size and working load), on the coating properties and sliding wear performance. The results of the study indicate that the sliding wear resistance of the Cr 3 C 2 -NiCr coatings is highly influenced by the features of the Cr 3 C 2 carbides. The presence of nano, submicron and few microns sized carbides in the coatings improves their density and hardness, leading to a significant reduction in wear rates under test conditions. Furthermore, the size of the abrasive SiC grit on the counter surface plays a significant role in determining the sliding wear behavior of these coatings. Based on the analysis of the test data, the mechanisms behind the performance of the Cr3C2-NiCr coatings have been investigated and used to interpret their sliding wear behaviors. A high microhardness in the coating is considered a reliable indicator of high quality, full density, and satisfactory wear resistance. This study has identified and recommended optimized materials for improved coating properties based on the key findings. These findings contribute to the understanding of the relationship between feedstock features, sliding abrasive wear conditions, and the wear rates of HVOF-sprayed Cr 3 C 2 -NiCr coatings.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 959-963, May 11–14, 2015,
.... Toma, E. Turunen, C. Widener, editors httpsdoi.org/10.31399/asm.cp.itsc2015p0959 Copyright © 2015 ASM International® All rights reserved www.asminternational.org Comparative Study of the Erosive Wear of Thermally Sprayed Coatings Using Powder and Flexi-Cord Feedstock Materials C.R.C. Lima, R. Libardi...
Abstract
View Paper
PDF
Sprayed deposits using conventional wire and powder materials open a wide range of possibilities to solve wear problems in engineering equipment. The option for new different spray technologies and consumables like nanostructured powder materials and nanocomposite cored wires has expanded the engineering possibilities. Cored wire technology allows the use of compositions that cannot be drawn into wire form like carbides in metallic matrix and high-temperature materials, thus intensifying the use of low operating cost welding and spraying processes to demanding wear applications. The objective of this work was to compare the mechanical characteristics and erosive wear performance of coatings obtained by Flame Spray and High Velocity Oxygen Fuel Spray using some selected powder and flexi-cord wire materials. The wear resistance of the coatings was determinate by slurry erosion wear test.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 414-421, May 22–25, 2023,
... design of feedstock material for additive manufacturing: exploring the Al-Co-Cr-Fe-Ni-Ti compositionally complex alloys L. Gerdt1, M. Müller1, M. Heidowitzsch1, J. Kaspar1, E. Lopez1, M. Zimmermann1,2, C. Leyens1,2, A. Hilhorst3, P.J. Jacques3 1 Fraunhofer Institute for Material and Beam Technology IWS...
Abstract
View Paper
PDF
The need for sustainable use of resources requires continuous improvement in the energy efficiency and development of new approaches to the design and processing of suitable materials. The concept of high entropy alloys (HEAs) has recently been extended to more general compositional complex alloys (CCAs) and multi-principal element alloys (MPEAs). One of the major challenges on the way to application of these alloys is the extensive design and selection efforts due to the great variety of possible compositions and its consequences for workability and resulting material properties. The favorable high-temperature strength of Ni-based and Co-based superalloys is ascribed to a defined γ/γ’ structure consisting of a disordered FCC A1 matrix and ordered L 12 γ’ precipitates. In the current work we extended this design concept to CCAs, allowing disordered BCC A2 and ordered B2 phases in additions or in substitution of the original γ/γ’ structure. We used a high-throughput screening approach combining CALPHAD-based computational tools with in situ alloying by means of laser cladding. Wall-type specimens with gradient composition in the system Al-Co-Cr-Fe-Ni-Ti with varying Al, Ti and Cr content were analyzed. The combined modelling and experimental screening approach was demonstrated to be a powerful tool for designing new high performance AM-ready feedstock.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1430, May 2–4, 2005,
... 2005 Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH® All rights reserved www.asminternational.org Improving thermal cycling life of thermal barrier coatings using cryomilled nanostructured NiCrAlY powder as feedstock material Leonardo Ajdelsztajn*, University of California at Davis, USA...
Abstract
View Paper
PDF
Thermal cycle lifetimes of two thermal barrier coating (TBC) systems with the same plasma sprayed yttria-stabilized- zirconia (YSZ) topcoat but different low pressure plasma sprayed (LPPS) bond coats, conventional and cryomilled NiCrAlY feedstock powder, were studied. Thermal cycling tests consisted of 50 min at 1121C followed by 10 min air-cooling to room temperature. The coating produced with the cryomilled powder showed a 300% increase in lifetime when compared to the conventional one. Both TBCs failed as a result of delamination and spallation of the ceramic top coats. Several factors like thermally grown oxide (TGO) thickness, TGO composition, CTE mismatch, creep resistance of the NiCrAlY bond coat, and others that affected the thermal cycling life of the system, were analyzed in this work. Abstract only; no full-text paper available.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 186-191, May 22–25, 2023,
...: Proceedings from the International Thermal Spray Conference May 22 25, 2023; Quebec City, Canada httpsdoi.org/10.31399/asm.cp.itsc2023p0186 Copyright © 2023 ASM International® All rights reserved. www.asminternational.org Mixed-Material Feedstocks for Cold Spray Additive Manufacturing of MetalPolymer...
Abstract
View Paper
PDF
High-performance polymers such as poly(ether ether ketone) (PEEK) are appealing for a wide variety of industrial and medical applications due to their excellent mechanical properties. However, these applications are often limited by relatively low thermal stability and conductivity compared to metals. Many methods developed to metallize polymers, including vapor deposition and thermal spray processes, can lead to poor quality control, low deposition rate, and high cost. Thus, cold spray is a promising potential alternative to rapidly and inexpensively produce polymer-metal composites. In this study, we investigated the deposition characteristics of metalpolymer composite feedstock, composed of PEEK powder with varying volume fractions of copper (Cu) flake added, onto a PEEK substrate. We prepared the Cu-PEEK composite powder in varying compositions by two methods: hand-mixing the powders and cryogenically milling the powders. Scanning electron microscopy (SEM) of the feed mixtures shows that cryogenically milling the polymer and metal powders together created uniformly distributed micron-scale domains of Cu on PEEK particle surfaces, and vice versa, as well as consolidating much of the porous Cu flake. In lowpressure cold spray, the relatively large volume fractions of PEEK in the composite mixtures allowed for lower operating temperatures than those commonly used in PEEK metallization (300-500 °C). While the deposition efficiencies of each mixture were relatively similar in single-layer experiments, deposits formed after multiple passes showed significant changes in deposition efficiency and composition in PEEK-rich feedstock mixtures. SEM of deposit surfaces and cross-sections revealed multiple co-dominant mechanisms of deposition, which affect both the porosity and final composition of the deposit. Though present in all samples analyzed, the effects of cryogenic milling were more prevalent at lower Cu concentrations.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 575-580, May 4–6, 2022,
... of the process. The formation of amorphous phases causes a change in the capacitive behaviour of the coatings. The tendency to form amorphous areas can be influenced by the composition of the feedstock material or coating parameters. On the one hand, mullite coatings based on two different Al 2 O 3 to SiO 2...
Abstract
View Paper
PDF
Various alumina-based materials are applied to achieve different electrical insulation properties based on the variation of the material specific relative permittivity. Thermally sprayed mullite (Al 2 O 3 · SiO 2 ) can form an amorphous phase due to the high cooling rates of the process. The formation of amorphous phases causes a change in the capacitive behaviour of the coatings. The tendency to form amorphous areas can be influenced by the composition of the feedstock material or coating parameters. On the one hand, mullite coatings based on two different Al 2 O 3 to SiO 2 ratios are investigated. On the other hand, a parameter variation is used to achieve various particle temperatures during the process. The coatings are investigated via X-ray diffraction and DSC for phase formation, electron microscopy for coating structure and impedance spectroscopy for measuring the AC-resistance. The conducted variation of the feedstock material as well as the parameters causes differences in the XRD and DSC measurements correlating with a difference in the amounts of amorphous phases. For the capacitive behaviour, coatings applied with hydrogen as process gas showed decreased AC-resistance values. The chemical composition of the feedstock material indicates that the AC-resistance decreases with increasing amounts of SiO 2 . In summary, mullite has promising insulation properties which can be modified by the feedstock material composition as well as the coating parameters. For future application, mullite is a promising candidate for increasing the electrical insulation properties in conditions under high electrical and mechanical demands.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1443, May 2–4, 2005,
... Abstract Based on the previous studies of nanostructured WC based coatings, various improvement methods of the coatings were attempted. On of the method was to improve the feedstock materials via a partial flocculation method. This method uses a special technology to form spherical spray dried...
Abstract
View Paper
PDF
Based on the previous studies of nanostructured WC based coatings, various improvement methods of the coatings were attempted. On of the method was to improve the feedstock materials via a partial flocculation method. This method uses a special technology to form spherical spray dried powders using nanostructured starting materials. According to this method, morphology and porosity level of the feedstock material was controlled. In addition, the basic principle of this method will be introduced. A few other methods are tried to improve the feedstock materials including carbon addition and a Co coating method. The coating morphology and characteristics are analyzed and wear performance is compared. The carbon contents, porosity, phases, and wear loss by a sand abrasion test will be presented in details. Abstract only; no full-text paper available.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 197-203, April 29–May 1, 2024,
... during thermal spraying. Feedstock development was conducted to enhance the coating deposition for AlN. Therefore, a parameter study was carried out with AlN feedstock material to form a protective alumina shell around the AlN particles. Subsequently, the heat-treated powder was applied on an aluminium...
Abstract
View Paper
PDF
The need for effective electrical insulation coupled with good thermal conductivity in power electronics has led to an exploration of suitable solutions for components like Insulated-Gate Bipolar Transistors (IGBTs). Considering its material properties, AlN emerges as a promising candidate for this application due to its high thermal conductivity, good electrical insulation and ample dielectric strength. However, aluminium nitride (AlN) has a low deposition efficiency when applied by atmospheric plasma spraying (APS). In contrast to AlN, alumina has a very good deposition efficiency during thermal spraying. Feedstock development was conducted to enhance the coating deposition for AlN. Therefore, a parameter study was carried out with AlN feedstock material to form a protective alumina shell around the AlN particles. Subsequently, the heat-treated powder was applied on an aluminium substrate by APS. X-ray diffraction (XRD) analysis displayed that, the heat-treated feedstock material contained AlN and α-Al 2 O 3 phases. It was observed from scanning electron microscopy (SEM) analysis that the AlN particles formed an oxide shell which led to an enhanced deposition efficiency with a high amount of AlN in the coating. The coatings were also investigated by XRD and SEM to prove the presence of AlN and alumina. For the first time, oxide shelled AlN was successfully applied by thermal spraying with sufficient coating deposition and enhanced AlN-content in the coating.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 392-399, May 22–25, 2023,
... Abstract Composite coatings using mixed alloy matrices reinforced with carbon-based solid lubricants as feedstock materials were prepared by atmospheric plasma spraying. The aim of the present study was to investigate the tribological characteristics of such coatings exploring potential...
Abstract
View Paper
PDF
Composite coatings using mixed alloy matrices reinforced with carbon-based solid lubricants as feedstock materials were prepared by atmospheric plasma spraying. The aim of the present study was to investigate the tribological characteristics of such coatings exploring potential benefits of CNTs as nano-additive to reduce friction and wear, improving lubrication conditions during operation in tribosystems, such as piston ring – cylinder liner systems. The chemical composition of feedstock materials and the thermal spray parameters during coatings deposition are correlated to friction coefficient and wear rate using pin-on-disk measurements. The developed coatings hybrid behaviour is studied. Co-based cermet as well as metal alloy anti-wear performance along with the promoted lubrication conditions during operation is revealed. The dependence of the developed coatings quality and performance on the characteristics of the feedstock powder is thoroughly discussed.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1161-1166, May 15–18, 2006,
... Abstract Thermal spray is a flexible technique enabling deposition of wide choice of feedstock materials including ceramics, metals or the mixture of both. Various spray technologies are available, such as different types of thermal plasma methods, electric arc based methods, HVOF and other...
Abstract
View Paper
PDF
Thermal spray is a flexible technique enabling deposition of wide choice of feedstock materials including ceramics, metals or the mixture of both. Various spray technologies are available, such as different types of thermal plasma methods, electric arc based methods, HVOF and other combustion methods. Obviously, the fatigue properties of coated bodies will differ based on the choice of feedstock material and on the spray technology used. Comparison was made of fatigue properties of bodies with Alumina, Ni-5wt%Al and composite coatings produced by gas and water stabilized plasma spray. It has been found, for instance, that Alumina coatings sprayed by water stabilized plasma torch (WSP) had substantially increased fatigue life times of specimens compared to specimens with coatings of the same feedstock deposited by the gas stabilized plasma torch. Measured fatigue data were related to a detailed structural characterization of the tested coatings. Obtained results are discussed with regard to our previous results obtained during fatigue tests of specimens with one-component coatings.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 37-42, May 10–12, 2016,
... Abstract This study investigates cold spray particle velocities achieved at different pressures and particle feed rates using particle image velocimetry (PIV). Particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found...
Abstract
View Paper
PDF
This study investigates cold spray particle velocities achieved at different pressures and particle feed rates using particle image velocimetry (PIV). Particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that average particle velocity decreases with increasing particulate loading. The effect is aggravated at lower pressures, but mainly depends on feedstock material, which implies more complex, volume-fraction related physics playing a role. Velocity distribution and particle dispersion were also found to be influenced by particle feed rate, depending on the material. Increased particle feed rates affect the magnitude and distribution of impact velocity and consequently the efficiency of cold spraying.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 63-71, May 4–6, 2022,
... microstructural features. Combining these concepts, metallic composite coatings were generated using high-pressure cold spraying to produce functional and protective coatings. Several spray trials were done to detect the effect of compositions and size of quasi-crystalline feedstock materials mixed with metal...
Abstract
View Paper
PDF
High-pressure cold spraying has shown significant potential in manufacturing metallic composite coatings for a wide range of industrial applications, including wear and corrosion protection. Quasi-crystalline materials, in turn, are promising candidates due to their unique microstructural features. Combining these concepts, metallic composite coatings were generated using high-pressure cold spraying to produce functional and protective coatings. Several spray trials were done to detect the effect of compositions and size of quasi-crystalline feedstock materials mixed with metal powders, Al6061, and stainless steel 316L, on coating microstructure, integrity, and surface properties. A scanning electron microscope was used to examine the microstructure of the feedstock materials and composite coatings. A 3D surface optical profilometer was also used to investigate surface texture. The wettability of the coating surfaces was measured by static water contact angles using a droplet shape analyzer. Cold-sprayed quasi-crystalline composite coatings showed denser and well-integrated deposits with a random distribution of phases across the composite surface, indicating promising structural reliability and hydrophobic behavior.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 785-792, October 7–11, 1996,
... methods, including: 1) an interactive multimedia-based education and training tool to effectively store and retrieve plasma spray processing information in a variety of formats; 2) an expert system to select plasma spray feedstock material for a specific coating function; 3) a one-dimensional plasma spray...
Abstract
View Paper
PDF
A comprehensive approach is presented for facilitating the implementation of advanced plasma spray processing technology in the manufacture, repair, and refurbishment of industrial components. This approach employs an integrated methodology for combining several advanced computer-based methods, including: 1) an interactive multimedia-based education and training tool to effectively store and retrieve plasma spray processing information in a variety of formats; 2) an expert system to select plasma spray feedstock material for a specific coating function; 3) a one-dimensional plasma spray process model that allows simulation of plasma spray processing conditions for identifying operational envelopes for a selected feedstock material; 4) an interface fracture model for identifying appropriate acceptance criteria for reduced cracking along the coating/substrate interface; and 5) a set of computer-based nondestructive test methods for performing quality assurance and control. This comprehensive approach and the integrated methodology provide an advanced engineering tool for the selection, optimization and implementation of specific advances in plasma spray processing technologies. A major outcome is the reduced need for expensive and time-consuming trial-and-error methods in evaluating the application of plasma spray coatings for the manufacture, repair, and refurbishment of specific industrial components. This comprehensive approach and integrated methodology can be extended to include other thermal spray processing technologies as well.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 313-320, May 7–10, 2018,
... Abstract The current study investigates the influence of the grain size fraction D of a FeCrB/WC-Co feedstock material on the coating properties. In previous studies, novel FeCrB/WC-Co wear and corrosion protection coatings applied by means of high velocity air-fuel (HVAF) spraying were...
Abstract
View Paper
PDF
The current study investigates the influence of the grain size fraction D of a FeCrB/WC-Co feedstock material on the coating properties. In previous studies, novel FeCrB/WC-Co wear and corrosion protection coatings applied by means of high velocity air-fuel (HVAF) spraying were developed by the authors. It was observed that coatings, which were produced with a slightly decreased powder grain size fraction and identical chemical composition showed improved coating properties, i.e. reduced crack formation in the coating at high powder feed rates . and lower current densities at high overpotentials. The goal of this study is to investigate the influence of the powder grain size fraction on the coating properties in more detail. Furthermore, the underlying mechanism for the improved coating properties, with regard to their corrosion behaviour, is investigated. Therefore, the FeCrB/WC-Co feedstock material with the grain size fractions of -20 +3 μm and -32 +11 μm and identical chemical composition was applied by means of HVAF-spraying and the coatings were subsequently analysed. Light microscopy was used to investigate the microstructure of the coatings. The wear and corrosion properties were analysed using pin-on-disc (POD) and electrochemical polarization tests respectively. XRD-measurements were used to investigate the phase composition and to develop a hypothesis for the different corrosion behaviours of the investigated coatings. The results show that HVAF-sprayed FeCrB/WC-Co coatings produced with a powder grain size fraction of -20 +3 μm exhibit lower current densities at high overpotentials, compared to the coatings produced with a powder grain size fraction of -32 +11 μm.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 339-345, June 7–9, 2017,
... process that enables the production of thin, dense and near net shape corrosion/wear protection coating systems, which significantly reduce the post-production time and costs. In this study, the HVAF coating process and a novel Fe-based feedstock material are investigated. In the first step the Fe-based...
Abstract
View Paper
PDF
One important trend in thermal spraying is the application of novel Fe-based corrosion/wear protection coating systems. A typical field of application for such corrosion and abrasive wear protection coatings are rotary dryers of paper machines. At the moment, these cylinders are coated by wire arc spraying. A disadvantage of the wire arc sprayed coatings is their high thickness, which has a heat-insulation effect, and their high roughness. Therefore, an expensive post production grinding process is necessary in order to achieve the required surface quality. The goal is to develop a HVAF process that enables the production of thin, dense and near net shape corrosion/wear protection coating systems, which significantly reduce the post-production time and costs. In this study, the HVAF coating process and a novel Fe-based feedstock material are investigated. In the first step the Fe-based powder is analysed thermally using differential scanning calorimetry, to investigate the solidification and melting temperature of the feedstock material. Furthermore, the influence of the spraying distance and the powder feed rate on the microstructure and porosity of the resulting coatings is investigated using light microscopy. Furthermore, the deposition efficiency of HVAF coatings is analysed regarding their economic efficiency.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 690-694, May 13–15, 2013,
... Abstract The aim of this study is to better understand the bonding mechanism of coatings produced by vacuum kinetic spraying. Fe-based amorphous alloy was selected as the feedstock material because it exhibits brittleness, similar to ceramics, as well as plasticity, in contrast. Prior...
Abstract
View Paper
PDF
The aim of this study is to better understand the bonding mechanism of coatings produced by vacuum kinetic spraying. Fe-based amorphous alloy was selected as the feedstock material because it exhibits brittleness, similar to ceramics, as well as plasticity, in contrast. Prior to spraying, the powder was ball milled to a sufficiently small size to form an aerosol state. The powder was then deposited on glass substrates using different gas flow rates to control the kinetic energy of sprayed particles. Powder size and coating thickness were measured, the phases in the powder and coatings were analyzed, and the microstructure of the coatings was examined. The results show that the plasticity of feedstock materials and the size of the powder have a major effect on deposition behavior during vacuum kinetic spraying.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 637-644, May 4–6, 2022,
.... The use of suspensions as feedstock results in an almost unlimited flexibility in terms of chemical composition of the sprayed coatings. Moreover, thermal spraying of suspensions is a promising technique for processing expensive raw materials. Zn 2 TiO 4 coatings are only one example where the high costs...
Abstract
View Paper
PDF
When compared with conventional thermal spraying processes, thermal spraying of suspensions allows to produce coatings with outstanding properties in terms of microstructure, surface topography, and phase compositions, as well as mechanical, electrical or tribological requirements. The use of suspensions as feedstock results in an almost unlimited flexibility in terms of chemical composition of the sprayed coatings. Moreover, thermal spraying of suspensions is a promising technique for processing expensive raw materials. Zn 2 TiO 4 coatings are only one example where the high costs of blended oxide powders as feedstock material hinders the market introduction, whereas outstanding electrical properties and photocatalytic activity of thermally sprayed Zn 2 TiO 4 coatings are of great interest for various industrial applications. In this work, single oxide ZnO and TiO 2 raw materials as well as a Zn 2 TiO 4 feedstock powder were used to develop tailored aqueous suspensions suitable for thermal spraying. To follow the formation of the compositions in the system ZnO-TiO 2 , differential thermal analysis (DTA) and thermal gravimetry (TG) measurements were performed. Preparation routes of stable suspensions with low sedimentation rates, low viscosity and good flowability are discussed. Exemplary microstructures and phase compositions of sprayed coatings are shown. In all sprayed coatings, the Zn 2 TiO 4 phase has been formed during Suspension High Velocity Oxygen Fuel Spraying (S-HVOF). This work demonstrates the potential to develop appropriate cost-efficient suspension feedstocks from single oxide raw materials to obtain Zn 2 TiO 4 coatings.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 421-425, May 3–5, 2010,
... Abstract Processing of powder feedstock materials often influences the deposition behavior and ultimately, the properties of the atmospheric plasma spray (APS) deposited coatings. The necessity of materials design and the control of deposition parameters are therefore, of high importance...
Abstract
View Paper
PDF
Processing of powder feedstock materials often influences the deposition behavior and ultimately, the properties of the atmospheric plasma spray (APS) deposited coatings. The necessity of materials design and the control of deposition parameters are therefore, of high importance. Feedstock from promising ceramic thermal barrier coating materials with Ba(Mg 1/3 Ta 2/3 )O 3 and La(Al 1/4 Mg 1/2 T 1/4 )O 3 perovskite structures (λ~ 2 W/m-K and α~11x10-6 /K at 1473 K) were prepared through solid state and conventional spray drying techniques. The powders were then deposited on metallic substrates by APS process. Monitoring of in-flight particle characteristics and splat formation as well as characterization of deposited coatings, were conducted. It was found that these types of perovskite materials tend to lose constituents during deposition by atmospheric plasma spraying. This paper reports on the challenges of powder feedstock design and the control of critical deposition parameters to prevent or minimize the non-stoichiometric deposition of decomposition-prone perovskite coatings by APS process.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 569-574, May 2–4, 2005,
... zirconia. The intent of the study was to compare spraying behaviour and deposit properties of pairs of feedstock material that have just about the same chemical composition but differ considerably in the way of preparation. Free-flight particles as well as deposits were characterised by standard techniques...
Abstract
View Paper
PDF
Calcium zirconate and magnesium zirconate prepared by synthesis and agglomeration were sprayed using a water stabilized plasma gun under varied spraying conditions. The same set of conditions was maintained during spraying of fused lime stabilized zirconia and magnesia stabilized zirconia. The intent of the study was to compare spraying behaviour and deposit properties of pairs of feedstock material that have just about the same chemical composition but differ considerably in the way of preparation. Free-flight particles as well as deposits were characterised by standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, differential thermal analysis, and pycnometry. The differences between relevant coatings were evaluated namely in terms of morphology, chemical and phase composition, density and porosity. Sources of observed differences are discussed.
1