Skip Nav Destination
Close Modal
Search Results for
environmental barrier coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 270 Search Results for
environmental barrier coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 23-30, May 24–28, 2021,
... Abstract The growth kinetics of thermally grown oxide (TGO) silica in Yb-disilicate (YbDS) environmental barrier coatings (EBCs) significantly affects the durability of EBCs. The oxygen permeability can control the TGO growth kinetics and thus could play an essential role in determining EBCs...
Abstract
View Paper
PDF
The growth kinetics of thermally grown oxide (TGO) silica in Yb-disilicate (YbDS) environmental barrier coatings (EBCs) significantly affects the durability of EBCs. The oxygen permeability can control the TGO growth kinetics and thus could play an essential role in determining EBCs life. Therefore, the oxygen permeability constant of YbDS and TGO is systematically evaluated and quantified in terms of thermodynamics using defect reactions and the parabolic rate constant (kp), respectively. Dry oxygen and wet oxygen conditions as well as different temperatures, partial pressures and top coat modifiers are investigated. The results offer evidence that the oxygen permeability constant for the YbDS top coat is an order of magnitude higher than for the TGO. As such, the TGO hinders the oxidant diffusion stronger, proving to be the diffusion rate controlling layer. Moreover, water vapor strongly increases the oxygen permeability with defect reactions playing a key role. It is suggested that the mass transfer through the top coat is primarily by outward ytterbium ion diffusion and inward oxygen ion movement, with the latter being dominant, particularly in wet environments. The effect of top coat modifiers on oxidant permeation is composition sensitive and seems to be related to their interaction with oxygen ions and their mobility.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 1-13, May 4–6, 2022,
... Abstract Environmental barrier coatings (EBCs) are required to protect SiC based composites in high temperature, steam containing combustion environments found in the latest generation of high efficiency gas turbine aeroengines. Ytterbium disilicate has shown promise as an environmental barrier...
Abstract
View Paper
PDF
Environmental barrier coatings (EBCs) are required to protect SiC based composites in high temperature, steam containing combustion environments found in the latest generation of high efficiency gas turbine aeroengines. Ytterbium disilicate has shown promise as an environmental barrier coating, showing excellent phase stability at high temperature and a coefficient of thermal expansion close to that of SiC; however, its performance is dependent on the conditions under which the coating was deposited. In this work, a parametric study was undertaken to demonstrate how processing parameters using a widely used Praxair SG-100 atmospheric plasma spraying torch affect the phase composition, microstructure and mechanical properties of ytterbium disilicate environmental barrier coatings. Ytterbium disilicate coatings were deposited using 5 sets of spray parameters, varying arc current and secondary gas flow. The phases present in these coatings were quantified using X-ray diffraction with Rietveld refinement, and the level of porosity was measured. Using this data, the relationship between processing parameters and phase composition and microstructure was examined. Abradable coatings are used throughout gas turbine engines to increase efficiency in the compression and combustion phases of the turbine. Abradable coatings are soft enough to be worn away by turbine blade tips (without damaging the tip itself), allowing for tighter clearances to be used, limiting leakages and increasing efficiency. Using the optimum process parameter window determined in this work, a low density abradable Yb 2 Si 2 O 7 layer will be deposited in future research.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 422-431, May 4–6, 2022,
... Abstract High amorphous phase formation tendency, a desirable microstructure and phase composition and silicon evaporation are the challenges of spraying Yb 2 Si 2 O 7 environmental barrier coatings (EBCs). This research addresses these issues by depositing as-sprayed high crystalline Yb 2 Si...
Abstract
View Paper
PDF
High amorphous phase formation tendency, a desirable microstructure and phase composition and silicon evaporation are the challenges of spraying Yb 2 Si 2 O 7 environmental barrier coatings (EBCs). This research addresses these issues by depositing as-sprayed high crystalline Yb 2 Si 2 O 7 using atmospheric plasma spray (APS) without any auxiliary heat-treating during spraying, vacuum chamber, or subsequent furnace heat treatment, leading to considerable cost, time, and energy savings. Yb 2 Si 2 O 7 powder was sprayed on SiC substrates with three different plasma powers of (90, 72 and 53 kW) and exceptional high crystallinity levels of up to ~91% and deposition efficiency of up to 85% were achieved. The silicon mass evaporation during spraying was controlled with a short stand-ff distance of 50 mm, and an optimum fraction of Yb 2 SiO 5 secondary phases (<20 wt.%) was evenly distributed in the final deposits. The desirable microstructure, including a dense structure with uniform distribution of small porosities, was observed. The undesirable vertical crack formation and any interconnected discontinuities were prevented. Reducing the plasma power from 90 kW to 53 kW, while conducive for mitigating the silicon mass loss, was detrimental for microstructure by increasing the fraction of porosities and partially melted or unmelted fragments. The gradual decrease of the coating temperature after deposition alleviated microcracking but has an insignificant effect on the crystallinity level. Coatings annealed close to their operating temperature at 1300 °C for 24 hours demonstrated sintering and a crack healing effect, closing the tiny microcracks through the thickness. An improved coating composition was detected after annealing by the transformation of Yb 2 SiO 5 to Yb 2 Si 2 O 7 (up to ~10 wt.%).
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 566-571, May 3–5, 2010,
...). To alleviate the thickness recess that Si-based ceramics undergo in a high-temperature environmental attack (e.g., H 2 O vapour), appropriate refractory oxides are engineered as environmental barrier coatings (EBCs). Presently, the state-of-the art EBCs comprise multilayers of silicon (Si) bond coat, mullite...
Abstract
View Paper
PDF
Si-based ceramics (e.g., SiC and Si 3 N 4 ) are known as promising high-temperature structural materials in various components where metals/alloys reached their ultimate performances (e.g., advanced gas turbine engines and structural components of future hypersonic vehicles). To alleviate the thickness recess that Si-based ceramics undergo in a high-temperature environmental attack (e.g., H 2 O vapour), appropriate refractory oxides are engineered as environmental barrier coatings (EBCs). Presently, the state-of-the art EBCs comprise multilayers of silicon (Si) bond coat, mullite (Al 6 Si 2 O 13 ) intermediate layer and BaO-SrO-Al 2 O 3 -SiO 2 (BSAS) top coat. Evaluating and understanding their mechanical properties, such as, the elastic modulus (E) and the strain-stress relationship is essential for their practical application and reliable employment. It was investigated via depth-sensing indentation the role of high-temperature treatment (1300°C), performed in H 2 O vapour environment (for time intervals up to 500 h), on the mechanical behaviour of air plasma sprayed Si/mullite/BSAS layers deposited on SiC substrates. Laser-ultrasonics was employed to evaluate the E values of as-sprayed coatings and to validate the indentation results. The fully crystalline, crack-free and near crack-free as-sprayed EBCs were engineered under controlled deposition conditions. The (i) absence of phase transformation and (ii) stability of the low elastic modulus values (e.g., ~60-70 GPa) retained by the BSAS top layers even after harsh environmental exposures provides a plausible explanation for the almost crack-free coatings observed. The measured mechanical properties of the EBCs and their microstructural behaviour during the high-temperature exposure are discussed and correlated.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 730-735, May 3–5, 2010,
... Abstract Mullite (Al 6 Si 2 O 13 ) is the basis of efficient environmental barrier coatings (EBCs) for protecting Si-based ceramic matrix composites (CMCs) selected to replace specific hot-section metallic components in advanced gas turbines. Furthermore, YSZ-mullite multilayer architectures...
Abstract
View Paper
PDF
Mullite (Al 6 Si 2 O 13 ) is the basis of efficient environmental barrier coatings (EBCs) for protecting Si-based ceramic matrix composites (CMCs) selected to replace specific hot-section metallic components in advanced gas turbines. Furthermore, YSZ-mullite multilayer architectures with compositional grading between the bond coat and YSZ top coat were envisioned as solutions to ease their coefficient of thermal expansion (CTE) mismatch induced stress. Consequently, a proper understanding of the mechanical properties such as the elastic modulus, hardness or plastic/elastic recovery work serve for an efficient design of such refractory oxide multilayers. In this work, three different mullite powder morphologies (fused and crushed, spray-dried and freeze-granulated) were employed. Using depth-sensing indentation with loads in the range 100 – 500 mN, the role of the microstructure and morphology of the powder feedstock on the mechanical behaviour of air plasma sprayed mullite bond coats deposited on SiC Hexoloy substrates was investigated. Fully crystalline as-sprayed mullite coatings were engineered under controlled deposition conditions. Mechanical properties were measured for the as-sprayed coatings as well as for coatings heat-treated at 1300°C, in water vapour environment, for periods up to 500 h. Both E and H values of the coatings are found to be highly dependent on the morphology of the starting powders.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 115-119, May 4–7, 2009,
..., R.S. Lima, G. Montavon, editors, p 115-119 httpsdoi.org/10.31399/asm.cp.itsc2009p0115 Copyright © 2009 ASM International® All rights reserved. www.asminternational.org Mullite and Mullite/ZrO2-7wt%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings E. Garcia,* J. Guimarães, P. Miranzo...
Abstract
View Paper
PDF
In this study, two processing routes are used to produce mullite powders for thermal spraying and the influence of each method on particle morphology and microstructure is investigated. Different thermal treatments are performed to improve grain cohesion and powder flow and their effect on the crystal structure of the powder is assessed as well. The powders are plasma sprayed, in-flight characteristics are measured, and splats are collected and analyzed. A correlation among powder morphology, in-flight particle properties, and splat morphology is established to better understand the influence of powder processing route on coating formation.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 283-290, September 27–29, 2011,
... Abstract The ongoing development of environmental barrier coatings (EBCs) offers the prospect to implement the full potential of silicon-based ceramics for high temperature structural applications. The current state-of-the-art EBC system comprises a Si bond coat, a mullite (3Al 2 O 3 ·2SiO 2...
Abstract
View Paper
PDF
The ongoing development of environmental barrier coatings (EBCs) offers the prospect to implement the full potential of silicon-based ceramics for high temperature structural applications. The current state-of-the-art EBC system comprises a Si bond coat, a mullite (3Al 2 O 3 ·2SiO 2 ) interlayer and a (1-x)BaO·xSrO·Al 2 O 3 ·2SiO 2 , 0 ≤ x ≤ 1 (BSAS) crack-resistant and water vapour attack resistant top coat. In this study, the influence of water vapour corrosion on the structural and mechanical properties of plasma-sprayed Si/Mullite/BSAS architectures was assessed by furnace thermal cycle testing (e.g., 100 cycles, 2h/cycle at 1300°C). Commercially available mullite and BSAS powders were used to produce crystalline coatings by air plasma spraying. Fully crystalline mullite and celsian BSAS coatings were engineered under controlled conditions on silicon coated, sintered α-SiC Hexoloy substrates. The overall performance at high-temperature of these functionally graded EBCs is discussed and correlated to their microstructural characteristics.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 380-381, June 7–9, 2017,
... Abstract Environmental barrier coatings (EBC) are currently being investigated to protect ceramic matrix composite (CMC) turbine engine components in water-vapor rich combustion environments. Dense, crack-free, uniform and well-adhered coatings are demanded for this purpose. This paper...
Abstract
View Paper
PDF
Environmental barrier coatings (EBC) are currently being investigated to protect ceramic matrix composite (CMC) turbine engine components in water-vapor rich combustion environments. Dense, crack-free, uniform and well-adhered coatings are demanded for this purpose. This paper represents an assessment of different thermal spray techniques for deposition of Yb 2 Si 2 O 7 and silicon (Si) EBC layers. Plasma spraying of refractory silicates is known to be complicated by undesired glass transition due to rapid solidification as well as evaporation of Si-bearing species during spraying. Plasma spraying of low-density Si also requires careful optimizations as it tends to oxidize during spraying, particularly at atmospheric conditions. Bearing these problems in mind, the Yb 2 Si 2 O 7 coatings were deposited by atmospheric plasma spraying (APS), high-velocity oxygen-fuel spraying (HVOF), and plasma-spray physical vapor deposition (PS-PVD) techniques. As-sprayed microstructure, amorphous content and phase composition of the coatings were analyzed. Based on the findings, the advantages and disadvantages of each method over other techniques are discussed with respect to process parameters and material properties.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 523-527, May 14–16, 2007,
... Abstract Studies on plasma spraying of zircon (ZrSiO 4 ) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly...
Abstract
View Paper
PDF
Studies on plasma spraying of zircon (ZrSiO 4 ) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly-adhesive coating. In this study, several amount of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated in order to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria stabilized zirconia (YSZ), glassy silica, while the one prepared from monolithic zircon powder composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1473K, silica and zirconia formed zircon in all the coatings. However, the coatings with the higher amount of yttria had less amount of zircon formed. This resulted in the less open porosity of the coating at elevated temperature. These yttria added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating had peeled off.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1625-1630, May 5–8, 2003,
..., which often forms on top of the C/SiC, must be protected from water vapor contact as the silica scale is not stable under these conditions. Hence, a protective coating, an Environmental Barrier Coating (EBC), is needed to shelter the material from the environmental influences of oxygen and water vapor...
Abstract
View Paper
PDF
Carbon-fiber-reinforced silicon carbide composites (C/SiC) are promising materials for high temperature light weight structural components. However, a protective coating is necessary to prevent the oxidation of the carbon, especially at temperatures above 400 °C. Also the silica scale, which often forms on top of the C/SiC, must be protected from water vapor contact as the silica scale is not stable under these conditions. Hence, a protective coating, an Environmental Barrier Coating (EBC), is needed to shelter the material from the environmental influences of oxygen and water vapor. Current EBC systems employ multiple layers, each serving unique requirements. However, any mismatch in the coefficients of thermal expansion (CTE) leads to internal stress and results in crack formation. In this case, oxygen and water vapor penetrate through the EBC, reducing the lifetime of the component. Mullite (Al 6 Si 2 O 13 ) is used in many known EBC systems on silicon-based ceramics either as an EBC itself or as a bondcoat. Due to its low CTE and its sufficient thermal cycling behaviour, mullite was chosen in this investigation as a first layer. As mullite suffers loss of SiO 2 when exposed to water vapor at high temperatures, an additional protective top coat is needed to complete the EBC system. Different oxides were evaluated to serve as top coat, especially high temperature oxides with low coefficients of thermal expansion (LCTE). An Environmental Barrier Coating containing mullite as bondcoat and a LCTE oxide as a top coat is proposed. Both layers were applied via atmospheric plasma spraying. Results on the influence of processing conditions on the microstructure of single mullite and LCTE oxide layers and also mullite / LCTE oxide systems will be presented. Special emphasis was directed towards the crystallinity of the mullite layer, and in the top layer towards low porosity and reduced crack density.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 580-585, September 27–29, 2011,
... to produce environmental barrier coatings (EBC). XRD analyses on as-sprayed coatings revealed amorphous or crystalline layers depending on plasma parameters. In EBC application, a volume change from crystallization or phase transformation was envisaged to be damaging due to induced stresses and fully...
Abstract
View Paper
PDF
Yttrium silicates are among the candidates for protection of silicon-based ceramics in high temperature and moist environments due to chemical and mechanical compatibility with substrate, low volatility and moisture resistance. Here we reported on the development of yttrium silicate coatings by sol precursor plasma spraying. The use of a sol feedstock allowed easy composition flexibility. The microstructure and the structure of as-sprayed and heat-treated coatings were investigated. Finer microstructure was obtained compared to micrometric powder plasma spraying traditionally used to produce environmental barrier coatings (EBC). XRD analyses on as-sprayed coatings revealed amorphous or crystalline layers depending on plasma parameters. In EBC application, a volume change from crystallization or phase transformation was envisaged to be damaging due to induced stresses and fully crystalline phases are a key durability requirement for EBC from conventional plasma spraying. Yttrium silicates are characterized by an important polymorphism and the ability to form amorphous coatings. Therefore, special attention was so paid to the amorphous degree of the coatings.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 709-715, May 4–6, 2022,
... and sealing layers of highly dense microstructure, with the targeted crystalline phase structure, without stoichiometric composition nor phase transformation and improved deposition efficiency on multi-shape components in different fields such as environmental, thermal barrier coatings (TBCs), environmental...
Abstract
View Paper
PDF
Deposition of protective dense environmental barrier layers is a promising solution to improve the reliability and environmental durability of the next-generation turbines and other industrial applications. In this context, spraying of fine particles could enhance the formation of fine dense coating microstructures with improved properties. In AIST we are focusing on the spraying of the fine particles via different spraying technologies including suspension plasma spraying, as well as deposition of the fine solid particles directly by aerosol deposition (AD) and plasma-assisted aerosol deposition (so-called Hybrid Aerosol Deposition; HAD. The HAD is a new coating window to spray the fine ceramic particles via the implementation of a low-power rf-plasma source to assist the aerosol deposition at room temperature. This study introduced the feasibility of utilization of HAD as an outstanding technology for deposition of dense ceramic coatings on different substrate materials and 3D deposition capability. Highly dense and well-adhered Al 2 O 3 coatings without obvious observable cracks and bulk-like properties were successfully fabricated on different substrate materials of SUS 304, Aluminium, Al 2 O 3 and glass, via HAD of fine particles. The substrate material and its hardness significantly influenced the first deposition step, which determined the coating adhesion and properties. Furthermore, homogeneously uniform, dense, and crack-free coating with a strong adhesion has been fabricated successfully on cylindrical substrates with 6.3 mm diameter. During HAD spraying the plasma activated the surface of the particles without reaching to the molten state, then the activated particles impact and stuck with the substrate by room temperature impact consolidation mechanism. Therefore, the fabricated coatings had the same crystal structure as the starting feedstock powder, and the activated surface act as glue and improved the deposition efficiency and 3D capabilities. Herein, the deposition phenomena of HAD makes it as a promising candidate technology for development of environmental and sealing layers of highly dense microstructure, with the targeted crystalline phase structure, without stoichiometric composition nor phase transformation and improved deposition efficiency on multi-shape components in different fields such as environmental, thermal barrier coatings (TBCs), environmental barrier coatings (EBCs) and gas turbine applications.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 495-500, May 15–18, 2006,
... parameters will be discussed and several examples of dense coatings given. Applications in the field of solid oxide fuel cells, environmental barrier coatings, and membranes will be described. atmospheric plasma spraying ceramic coating solid oxide fuel cells Thermal Spray 2006: Proceedings from...
Abstract
View Paper
PDF
The manufacture of thin (< 100 µm) and different, dense ceramic layers by atmospheric plasma spraying can be achieved by using appropriate coating conditions. Major process parameters are certainly particle temperature and velocity and also substrate temperature. Hence, the particle properties have been controlled and optimized by the use of particle diagnostic tools, the substrate temperature was controlled by the use of pyrometers. Another important parameter is the choice of an appropriate powder to avoid cracks and pores in the coating. In the paper the influence of the mentioned parameters will be discussed and several examples of dense coatings given. Applications in the field of solid oxide fuel cells, environmental barrier coatings, and membranes will be described.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 482-487, May 10–12, 2004,
... Abstract Improved HVOF spraying with a gas shroud has been developed to fabricate environmental barrier coatings of corrosion resistant alloys such as HastelloyC. For such coatings, control of oxidation of the powder material during spraying is very important and the gas shroud has been...
Abstract
View Paper
PDF
Improved HVOF spraying with a gas shroud has been developed to fabricate environmental barrier coatings of corrosion resistant alloys such as HastelloyC. For such coatings, control of oxidation of the powder material during spraying is very important and the gas shroud has been effective to lower oxygen content to 0.19mass%. In the present study, further reduction of oxygen content to 0.063mass% was achieved by changing the composition of combustion gas by introducing nitrogen into the combustion chamber. This value is almost comparable to the oxygen content 0.042mass% of the feedstock powder but the porosity of the coating increased. Introduction of nitrogen to the combustion chamber lowered the temperature of the spray particles in flight while maintaining their high velocity. Another coating with 0.14mass% was obtained with open porosity below 0.1vol% by changing the mixing ratio of nitrogen, which exhibited improved environmental barrier property in artificial seawater.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 25-31, May 4–6, 2022,
... Abstract Silicon coatings have been developed for environmental barrier coatings by thermal spraying. Until now, these coatings have been produced almost exclusively by Atmospheric Plasma Spraying (APS). High Velocity Oxy-Fuel (HVOF) spraying is commonly used to produce dense metallic...
Abstract
View Paper
PDF
Silicon coatings have been developed for environmental barrier coatings by thermal spraying. Until now, these coatings have been produced almost exclusively by Atmospheric Plasma Spraying (APS). High Velocity Oxy-Fuel (HVOF) spraying is commonly used to produce dense metallic and carbide-based coatings due to high particle velocities. However, there have been no scientific reports on HVOF-sprayed silicon coatings in the literature. This study was conducted to investigate the feasibility of fabricating silicon coatings by HVOF using a DJ2600 spray system. Both the spray powders and the parameters were varied. The coatings were investigated on their surfaces and cross-sections using scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The hardness and indentation modulus of the silicon coatings were also determined. The results show that the particle size distribution and the stand-off distance are important influencing factors. Dense coatings could be produced by HVOF spraying, confirming the feasibility.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 762-766, June 2–4, 2008,
... Abstract Titania (TiO 2 ) coatings are candidates for high-temperature applications in the fields of wear, corrosion, and environmental barrier coatings (EBCs); however, at temperatures at or above 540 °C, titania coatings are not pursued due to the usual presence of the anatase phase...
Abstract
View Paper
PDF
Titania (TiO 2 ) coatings are candidates for high-temperature applications in the fields of wear, corrosion, and environmental barrier coatings (EBCs); however, at temperatures at or above 540 °C, titania coatings are not pursued due to the usual presence of the anatase phase in the as-sprayed TiO 2 coatings. This phase tends to impede the applications of these materials at high temperatures due to the stresses provided by the critical anatase-to-rutile phase transformation at temperatures higher than 540 °C; such stresses tend to generate cracks in the coating microstructure, leading to premature coating failure. It has been hypothesized that this barrier could be overcome by the use of nanostructured TiO 2 coatings, due to their known high toughness and resilience levels. Nanostructured TiO 2 powders were HVOF-sprayed. The high velocity levels of the HVOF-sprayed particles generated a gas-tight microstructure (i.e., no through-thickness porosity). SEM pictures of the as-sprayed and heat-treated (800 °C for 1 h) coatings did not show any significant signs of crack network formation, which may have been prevented by the high toughness and resilience of these coatings. These coatings were also HVOF-sprayed on SiC substrates and did not exhibit macroscopic signs of delamination after a 1400 °C exposure for 1 h in air.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 861-865, May 10–12, 2004,
... Abstract Applying an environmental barrier coating (EBC) and a thermal barrier coating (TBC) on the next generation gas turbine structural materials such as silicon carbide matrix composites will lead to large stresses due to thermal expansion mismatch; thereby limiting the coating's...
Abstract
View Paper
PDF
Applying an environmental barrier coating (EBC) and a thermal barrier coating (TBC) on the next generation gas turbine structural materials such as silicon carbide matrix composites will lead to large stresses due to thermal expansion mismatch; thereby limiting the coating's effectiveness and lifetime. Nanostructured materials possess a large volume fraction of grain boundaries and are conjectured to partially relieve the strain in the coating structure. A Triple Torch Plasma Reactor (TTPR) was used to spray multi-layered TBCs consisting of a mullite EBC deposited either on a silicon carbide or a mullite substrate, a nano-phase partially stabilized zirconia coating (n- PSZ), and a yttria stabilized zirconia coating (YSZ) as the TBC. The nanostructure of the n-PSZ could be maintained during the deposition process. The coatings were heat treated at 1300°C and the change in microstructure and mechanical properties were analyzed using scanning electron microscopy (SEM), micro-indentation and scratch testing applied to the coating cross section. While a change in the microstructure was observed, in particular grain growth, the hardness and elastic modulus appeared to be little affected by the heat treatment giving a preliminary validation of the multilayer concept.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 203-206, May 3–5, 2010,
... Abstract Suspension plasma spraying is gaining greater interest for emerging applications such as new thermal barrier coatings, next generation environmental barrier coatings and ceramic membranes as in solid oxide fuel cells. Mettech developed an axial injection plasma process coupled...
Abstract
View Paper
PDF
Suspension plasma spraying is gaining greater interest for emerging applications such as new thermal barrier coatings, next generation environmental barrier coatings and ceramic membranes as in solid oxide fuel cells. Mettech developed an axial injection plasma process coupled with an automatic suspension feed system, and demonstrated its capability to overcome the complexities of the process and deliver quality coatings. This paper aims at determining the durability and stability of the gun, suspension feeder and their components. A 120-hour duration test was performed, and the plasma torch and suspension feed parameters and performances were recorded. The test results indicate that the equipment and process are stable and reliable, and ready for industrial applications.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 171-176, September 27–29, 2011,
... Abstract Compositionally graded mullite/ZrO 2 coatings, have been tested as environmental barrier coatings (EBCs) for protection against water vapor corrosion of Si-based ceramic components intended for application in turbine engines. Four and five layered systems were engineered by plasma...
Abstract
View Paper
PDF
Compositionally graded mullite/ZrO 2 coatings, have been tested as environmental barrier coatings (EBCs) for protection against water vapor corrosion of Si-based ceramic components intended for application in turbine engines. Four and five layered systems were engineered by plasma spraying over SiC substrates consisting of a Si bond coat layer, 2 or 3 mullite/ZrO 2 composite graded layers as middle layers and a nanostructured YSZ topcoat. These coatings were heat treated at 1300 °C in both stationary and thermal cycling conditions in a controlled water vapor environment. The effect of these ageing conditions on the coatings was comparatively investigated. Crystallization of the composite coatings and sintering of the YSZ topcoat was perceived. A reduction of SiO 2 content was detected in the composite layers before aging. The porosity of the coating did not change appreciably with the ageing tests and only the evolution of the pre-existing cracks and the growing of a thermally grown oxide layer can be highlighted as the major effect of the ageing tests.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 654-657, May 3–5, 2010,
... and the microstructure of the polished coatings is analyzed by scanning electron microscopy (SEM). environmental barrier coatings microstructure mullite refractories phase composition plasma spraying silicon carbide turbine engines water vapor corrosion yttria stabilized zirconia International Thermal...
Abstract
View Paper
PDF
Mullite and mullite/ZrO 2 bi-layer systems are being considered as environment barrier coatings (EBCs) for protection of Si-based (Si 3 N 4 , SiC) substrates against water vapor corrosion for application in forthcoming turbine engines. An approach to reduce the thermal expansion mismatch between mullite and ZrO 2 layers in those coatings would be to tailor intermediate mullite/Y-ZrO 2 composite layers. The feasibility of these composite layers is studied in a comparative manner by plasma spraying both single mullite and bi-layer coatings of mullite and of mullite/ Y-ZrO 2 (75/25 vol %.) over Hexoloy SiC substrates. All feedstock materials are equally prepared using spray drying methods as the mix powders are not commercially available. Singular spraying conditions are used to assure enhanced crystallization of the mullite phase. Coatings are aged for 100 h at 1300 °C in a controlled water vapor environment. The effect of water corrosion on the exposed coatings is comparatively investigated, determining changes in crystalline phase by X-ray diffraction (XRD), the crystallization of amorphous phases is highlighted by the use of differential thermal analysis (DTA) tools and the microstructure of the polished coatings is analyzed by scanning electron microscopy (SEM).
1