Skip Nav Destination
Close Modal
Search Results for
deposition rates
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 3554 Search Results for
deposition rates
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
Coating of Aluminium with High Deposition Rates Through Extreme High-Speed Laser Material Deposition
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 701-708, May 4–6, 2022,
... and deposition rates can be achieved in comparison to Laser Material Deposition (LMD), and heat-sensitive substrates can be coated. Moreover, in addition to this resource efficiency, the process is not only economically attractive but also sustainable. To reduce component weights as well as secondary energy...
Abstract
View Paper
PDF
In the past few years, the Extreme High-Speed Laser Material Deposition (EHLA) process has been used as a coating technology alongside conventional processes due to its unique process characteristics and is an economical and sustainable alternative to traditional technologies. The essential characteristic of the process is that the main energy is absorbed by the powder particles so that they reach the substrate surface in a molten state. Thereby, metallurgically bonded and dense wear and corrosion protection coatings are generated. This leads to significantly higher surface and deposition rates can be achieved in comparison to Laser Material Deposition (LMD), and heat-sensitive substrates can be coated. Moreover, in addition to this resource efficiency, the process is not only economically attractive but also sustainable. To reduce component weights as well as secondary energy consumption, aluminium has become an essential base material in most industrial sectors. Aluminium is not simple to process and the wear resistance is small due to the low hardness in comparison to widely used steels. Various technology solutions are currently being investigated for the coating of aluminium. The low melting temperature of aluminium (approx. 750 °C) poses a great challenge when coating with, for example, iron-based alloys. Another challenge for laser-based systems is the reflectance of aluminium in the wavelength range approx. between 1030-1070 nm of conventional laser beam sources. The high degree of reflection of aluminium is the reason why additive processing quiet challenging is. Therefore, for conventional laser-based processes, laser beam sources in other wavelength spectra, e.g. green or blue, are being developed to improve the processing of aluminium. Currently, commercially available multi-kW lasers in the visible light spectrum are still below the available power of IR beam sources. In the context of this study, the feasibility of coating aluminium using EHLA is investigated. A high power 8 kW IR disk laser of the TRUMPF company is used to determine the maximum possible deposition and surface rate.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 13-19, May 21–23, 2014,
... Abstract This study investigates the effect of high deposition rates and temperatures on the formation of vertical segmentation cracks in thermal barrier coatings. YSZ layers were deposited by atmospheric plasma spraying using different powder feed rates, raster speeds, and spraying distances...
Abstract
View Paper
PDF
This study investigates the effect of high deposition rates and temperatures on the formation of vertical segmentation cracks in thermal barrier coatings. YSZ layers were deposited by atmospheric plasma spraying using different powder feed rates, raster speeds, and spraying distances. Coating cross-sections were examined, elastic properties were measured, and thermal conductivity was determined by laser flash testing. Coating structures with vertical and horizontal cracks are shown to be anelastic with high strain tolerance, even after heat treating at 1100 °C.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 691-695, May 10–12, 2004,
... Abstract This paper presents a method to increase deposition rate of thermal plasma spray operations through the use of multiple injection ports. Numerical simulations indeed revealed a major energy loss in the process when using only one port. The influence of the carrier gas and the particle...
Abstract
View Paper
PDF
This paper presents a method to increase deposition rate of thermal plasma spray operations through the use of multiple injection ports. Numerical simulations indeed revealed a major energy loss in the process when using only one port. The influence of the carrier gas and the particle stream on the heat flow coming from the plasma torch was found very local and small compared to the total amount of energy. To take as much as possible advantage of the energy available in the plume, we thus propose to use a multiple number of injectors around the flame. Computational simulations are carried out to estimate the feasibility. They are based on the 3D Navier-Stokes equations coupled with a turbulence model. The gases (plasma gas, surrounding air and carrier gas) are supposed to be in local thermal and chemical equilibrium and loading effects are accounted for. The numerical results are supplemented by experimental results showing that multiple injectors can significantly increase deposition rate while preserving or even slightly improving the deposition efficiency. Characterisation of the microstructure, evaluated for all tests, is similar and no obvious differences can be detected apart from the porosity. This method thus results in a substantial reduction of the production cost.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 826-831, June 2–4, 2008,
..., and temporal variations of the arc and jet. This paper describes a simplified approach for studying how particle state distributions are influenced by torch conditions and powder distributions, and the implications for deposition rate monitoring and control. The approach combines a simplified jet model...
Abstract
View Paper
PDF
Plasma spray for depositing thermal barrier coatings features large distributions of particle states that result in significant variations in coating quality. These variations arise from distributions of particle sizes, large spatial gradients of plasma thermal-fluid fields, and temporal variations of the arc and jet. This paper describes a simplified approach for studying how particle state distributions are influenced by torch conditions and powder distributions, and the implications for deposition rate monitoring and control. The approach combines a simplified jet model with a more detailed particle model. The important fluid-thermal spatial gradients in the plasma jet are captured using a three zone model: a core region, modeled by growth of a turbulent shear layer around a laminar core, a transition region and a similarity region. Plasma-particle momentum and thermal interactions, particle phase transitions, internal particle temperature gradients, and collapse of in-flight hollow particles have been modeled using a multi-lumped particle model. Effects of distributions of particle size, particle morphology, injection velocity, and carrier gas flow were studied for YSZ spray in an Ar-He plasma. The results provide guidance on sensor design and operation and on approaches for plume location control.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 900-904, June 2–4, 2008,
... Abstract This paper investigates the need and requirements for developing an improved sensing scheme for plasma spray, which would aid in compensating for the large variations in deposition rate. Experimental evaluation of a variety of current sensors reveals poor correlation with deposition...
Abstract
View Paper
PDF
This paper investigates the need and requirements for developing an improved sensing scheme for plasma spray, which would aid in compensating for the large variations in deposition rate. Experimental evaluation of a variety of current sensors reveals poor correlation with deposition rate. Important issues that explain these results include reconsidering what particle state characteristics should be measured and determining what sensing characteristics are required to achieve better correlation with deposited mass. A new particle flux sensor is proposed that meets these challenges is evaluated.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1140-1145, May 4–7, 2009,
... Abstract In this study, a variety of yttria-stabilized zirconia (YSZ) coatings have been obtained by plasma spray physical vapor deposition with fine powders at high power. The coating structures were found to change significantly with powder feed rate, but less with substrate temperature...
Abstract
View Paper
PDF
In this study, a variety of yttria-stabilized zirconia (YSZ) coatings have been obtained by plasma spray physical vapor deposition with fine powders at high power. The coating structures were found to change significantly with powder feed rate, but less with substrate temperature and rotation speed. Porous YSZ coatings with a feather-like structure and low thermal conductivity were deposited at rates as high as 220 μm/min. These results demonstrate the potential of plasma spray physical vapor deposition for producing thermal barrier coatings.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1074, May 2–4, 2005,
... and discussed. Abstract only; no full-text paper available. deposition rate laser cladding power diode laser protective coatings spray nozzles Thermal Spray 2005: Proceedings from the International Thermal Spray Conference 02 May 2005 02 May 2005, ITSC2005, ITSC 2005, Basel, Switzerland DOI...
Abstract
View Paper
PDF
Laser cladding is a surface treatment technology in which thick, dense and metallurgically adhered metallic layers are deposited on various structural steels with relatively low heat input, high accuracy and reproducibility. Laser cladding processes used in industrial cladding are largely based on the use of CO 2 or Nd:YAG lasers. High power diode lasers (HPDL) with rectangular beam spots are regarded as ideal laser sources for laser cladding processes, due to their compact size, high electrical to optical efficiency, easy operation, and low investment and running costs. In laser cladding of large surface areas, the affectivity of the laser cladding process becomes more important, i.e. high laser powers, wide laser beam spots, and high coating material feedrates are regarded as beneficial. In order to optimise the cladding process for such applications, special attention has to be put on devices used to deliver the coating power to the process. In the present work, various parameters in effective HPDL cladding are described and new approaches to optimised HPDL cladding process are described. The performance of a new HPDL cladding powder delivery nozzle will be presented and discussed. Abstract only; no full-text paper available.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 41-47, May 11–14, 2015,
...-Stir Processing on the Wear Rate of WC-Based MMC Coatings Deposited by Low-Pressure Cold Gas Dynamic Spraying H. Ashrafizadeh, A. Lopera-Valle, A. McDonald Department of Mechanical Engineering University of Alberta, Edmonton, Alberta, T6G 2G8, Canada A. Gerlich Department of Mechanical and Mechatronics...
Abstract
View Paper
PDF
A low-cost, low-pressure (less than 1 MPa) cold spray unit was used to deposit tungsten carbide (WC)-based metal matrix composite (MMC) coatings on low carbon steel substrates. The coatings were then friction-stir processed (FSP) by using a flat cylindrical tool. Scanning electron microscopy (SEM), image analysis, micro-hardness testing, and ASTM Standard G65 dry abrasion wear testing were conducted to study the influence of FSP on the coating properties and its wear rate. It was found that porosity increased following FSP on the coating due to insufficient flow of the metal matrix material (nickel). The hardness of the WC-based MMC coating decreased after FSP as a result of increase in porosity and possible decarburization of the WC caused by the heat of the FSP. The SEM images taken from the cross sections of the FSPed coatings confirmed the effectiveness of FSP in distributing the WC particles within the matrix to produce a coating with uniform distribution of WC particles in the matrix. As a result, the abrasion wear resistance of the coatings after FSP increased compared to that of the as-sprayed coatings. This suggested that FSP can be considered as a method to improve the wear properties of MMC coatings.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 1-8, May 26–29, 2019,
... Abstract Industrialization of cold spray brings along the questions of cost and time efficiency of various spray procedures. In this work, high rate deposition of tantalum was studied by producing coating specimens where the powder to helium mass flow rate varied from 5% to 14%. Quasi-1D fluid...
Abstract
View Paper
PDF
Industrialization of cold spray brings along the questions of cost and time efficiency of various spray procedures. In this work, high rate deposition of tantalum was studied by producing coating specimens where the powder to helium mass flow rate varied from 5% to 14%. Quasi-1D fluid simulations predict a minimal effect of increased powder stream loading on particle impact velocity and temperature over those ranges, but the cost varies substantially. The experimental specimens, examined by using optical micrographs, porosity measurements, and hardness tests, show no discernable differences in the deposited samples. The increased stream loading rate, however, helped reduce the time required for processing the same amount of tantalum by a factor of three using identical helium spray conditions.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 371-374, May 7–10, 2018,
... Abstract The cold spray deposition mechanism of Ultra-High Molecular Weight Polyethylene (UHMWPE) requires a detailed understanding of strain rate sensitivity of UHMWPE. The yield and flow in UHMWPE are complex and sophisticated compared to metals due to their dependency on time, temperature...
Abstract
View Paper
PDF
The cold spray deposition mechanism of Ultra-High Molecular Weight Polyethylene (UHMWPE) requires a detailed understanding of strain rate sensitivity of UHMWPE. The yield and flow in UHMWPE are complex and sophisticated compared to metals due to their dependency on time, temperature, strain, strain-rate and the history of the processing. In this research work, powder-sintered UHMWPE of 10.5 Mg/mol was subjected to various strain-rates ranging from 10-2 s-1 to 103 s-1 via low compression strain-rate testing and Split Hopkinson Pressure Bar testing (SHPB). The experimental true stress-strain curves in compression of a sintered UHMWPE at pre-yield, yield point, and post-yield were analyzed. The pre-yield and yield point region, 10.5 Mg/mol UHMWPE exhibited an increase in the tangent modulus and the yield stress with an increase in strain rate. Further, the post-yield phenomenon in UHMWPE shows no apparent post-yield softening and shows an increase in the strain hardening with an increase in the strain-rate. The curves at increasingly higher strain rates showed an increasingly pronounced bi-linearity to its flow behavior with the rate of hardening increasing above 10~15% strain. Under the domain tested, the strain rate dependence for UHMWPE can be depicted by a logarithmic fit.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 260-265, September 27–29, 2011,
... Conference & Exposition 2011 September 27 29, 2011, Congress Center, Hamburg httpsdoi.org/10.31399/asm.cp.itsc2011p0260 Copyright © 2011 DVS Media GmbH, Düsseldorf All rights reserved Effect of nitrogen flow rate on mechanical properties of metallic coatings by warm spray deposition M. Watanabe, C. Brauns, M...
Abstract
View Paper
PDF
In Warm Spraying (WS), the temperature of the combustion flame is reduced and controlled by injecting nitrogen gas into the combustion flame before the injection of spray powders. Thus, temperatures of spray particles are kept under their melting points with moderately heated and thermally softened states. As compared to HVOF-spraying, the oxidation of particles can be significantly suppressed due to lower deposition temperatures, whereas, as compared to cold spraying, the degree of particle deformation upon impact can be enhanced by attaining higher particle temperatures. In the present study, Ti, Cu, and Al coatings were fabricated by WS under various nitrogen flow rates. The mechanical properties of the coatings were evaluated by tubular coating tensile (TCT) and micro flat tensile (MFT) tests. For the lower impact temperature regime, the coatings became denser and the ultimate strengths of Ti or Cu coatings increased reaching a maximum by decreasing the nitrogen flow rates. A further decrease of nitrogen flow rates and reaching the upper temperature regime reduced the coating strength. These results clearly demonstrate how particle temperatures affect the microstructures and mechanical properties of WS coatings and that optimum spray conditions have to be balanced between softening and oxidation by adjusting particle temperatures.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 913-920, May 5–8, 2003,
... by conventional thermal spray processes, as the materials lack both a liquid phase and sufficient ductility to permit deposition. Conventional VPS equipment is successfully applied in Thermal Plasmajet CVD processes for high deposition rate synthesis of diamond coatings. The feasibility of SiCN or boron carbide...
Abstract
View Paper
PDF
The system B-C-N contains the hardest known materials like diamond, cubic boron nitride and boron carbide, which also show excellent chemical resistance. The oxidation resistance is shifted to higher temperatures in comparison to pure diamond. But pure BCN coatings cannot be produced by conventional thermal spray processes, as the materials lack both a liquid phase and sufficient ductility to permit deposition. Conventional VPS equipment is successfully applied in Thermal Plasmajet CVD processes for high deposition rate synthesis of diamond coatings. The feasibility of SiCN or boron carbide synthesis by this method has also been proven. The use of liquid precursors results in outstanding deposition rates and improved operational safety. Methylized borazine is applied for synthesis of BCN coatings in thermal plasma jets. The use of single source precursors is advantageous with concern to the homogeneity of the coating forming species stoichiometry. For long-term storage cooling is necessary, but also under ambient conditions the precursor shows sufficient stability. Plasma gun nozzles with different diameter and design are applied and evaluated with concern to the resulting coating properties. Deposition rates of up to 1,500 µm/h have been achieved with homogeneous coating thickness and morphology on areas with 50 mm diameter. No porosity is detected in SEM investigations on cross sections and fracture surfaces show a fine columnar coating morphology. XRD investigations point at an amorphous structure. Only for very high substrate temperatures the formation of crystalline boron carbide B8C and h-BN or graphite phases is detected. Oxygen contamination results in boric acid formation and therefore has to be avoided carefully. During coating deposition on mild steel substrates the formation of boride and nitride reaction zones is observed. VPS sprayed nickel or molybdenum interlayers permit to inhibit the evolution of reaction zones. Thereby BCN coatings with thicknesses of up to 10 µm are deposited without local delamination. Space resolved emission spectroscopic analyses are carried out in order to detect coating forming and intermediate species. As Thermal Plasmajet CVD is a pure gas phase deposition process, the control of the space resolved emission permits easy process control.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 400-403, June 7–9, 2017,
... production, is economically challenging due to the conventionally low deposition rates. Consequently, industry is requesting more powerful technologies that maintain the quality advantages of the laser technology, but also make the process more productive and time effective. The modern highest power diode...
Abstract
View Paper
PDF
Laser cladding technology is widely used in industry to precisely apply tailored surface coatings, as well as three-dimensional deposits for repair and additive layer-by-layer fabrication of metallic parts. However, the processing of larger components, like tools for oil and gas production, is economically challenging due to the conventionally low deposition rates. Consequently, industry is requesting more powerful technologies that maintain the quality advantages of the laser technology, but also make the process more productive and time effective. The modern highest power diode lasers offer practical solutions for applying of large-area laser cladding with significantly increased productivity. Using a fiber-coupled diode laser of 20 kW power and the accordingly developed laser cladding heads, real deposition rates of metal alloys, e.g. Inconel 625, could reach 14 kg/h. With the new-developed powder nozzles with rectangular profile of the powder jet allows at a laser power of 20 kW single tracks with 45 mm-width can be produced. Besides the laser source, the processing laser head is the key parameter for a high productivity and efficiency of the whole cladding procedure. The paper presents a new generation of high-performance laser cladding heads with integrated process sensors, which guarantee a stable long-time operation at highest power levels. The deposition rates achieved with this technology are equal or even exceed typical values of the common PTA technique. Current applications are large-area coatings on power plant components, hydraulic cylinders for off-shore equipment, and large metal forming tools for automotive bodies.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 941-943, May 2–4, 2005,
... Abstract Coating technology is progressing at a steady rate with continuous significant improvements in the coatings performance. In the aerospace field, as well as in the stationary gas turbine field, coatings deposited by different processes (thermal spray, CVD, EBPVD) play an important role...
Abstract
View Paper
PDF
Coating technology is progressing at a steady rate with continuous significant improvements in the coatings performance. In the aerospace field, as well as in the stationary gas turbine field, coatings deposited by different processes (thermal spray, CVD, EBPVD) play an important role in order to increase the performances of the engines. In particular, in order to improve the resistance to oxidation and corrosion at high temperature, aluminium is deposited by several techniques (pack aluminising, above the pack and CVD) in alternative or addition to thermal spray coatings (mainly MCrAlY alloys where M stands for Co, Ni or CoNi). These MCrAlY coatings are generally deposited by Low Pressure Plasma Spray (LPPS) or Vacuum Plasma Spray (VPS), but also by High Velocity Oxygen Fuel (HVOF) and Air Plasma Spray (APS). This paper addresses the study of aluminium coatings deposited by CVD on CoNiCrAlY bond coats deposited by different processes: VPS with F4 gun, LPPS with EPI gun and HVOF. The aim is to verify if and how the different CoNiCrAlY coatings obtained by these three processes with different content of oxides and porosity could affect the deposition rate and quality of the Al coatings. The obtained samples have been characterized from the metallographic point of view in order to determine porosity, thickness and structure of both CoNiCrAlY and Al coatings. Al coating thickness has been taken as parameter in order to define the Al coating deposition rate on the three different CoNiCrAlY coatings. Further tests for the determination of aluminium content and chemical composition of the coatings are in progress.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 1123-1131, June 7–9, 2017,
...-corrosion rate increases with the deposition angle. At 90°, the deposition rate of metal droplets on the coating and substrate surface is maximized, and the hexagonal boron nitride (hBN) self-lubricating coating deposition rate is only 58 mg/(cm2·s). This work demonstrates that hBN can effectively decrease...
Abstract
View Paper
PDF
Adhesive-corrosion resistance is an important issue for the application life of solid lubricant coatings. With abundant metal droplets deposited on the surface of a solid self-lubricating coating, the coefficient of friction of the coating changes and results in adhesive wear. In this paper, a new method for evaluating the adhesive resistance for solid self-lubricating Ni-WSe2-BaF2·CaF2-Y-Ag-hBN coatings was reported. The microstructures and anti-adhesive characteristics under different angles of aluminum metal droplets obtained with an arc supersonic nozzle were investigated for high temperature solid self-lubricating coatings produced by plasma spray. The results demonstrate that the friction coefficient of Ni-WSe2-BaF2·CaF2-Y-Ag-hBN solid self-lubricant coatings is distributed between 0.086 and 0.299 at 25-800℃. The effect of molten metal drops on the coating adhesive-corrosion rate increases with the deposition angle. At 90°, the deposition rate of metal droplets on the coating and substrate surface is maximized, and the hexagonal boron nitride (hBN) self-lubricating coating deposition rate is only 58 mg/(cm2·s). This work demonstrates that hBN can effectively decrease the adhesive layer of the coating by the rate of the polishing and stripping.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 56-62, May 4–6, 2022,
..., respective films are mainly produced by thin film techniques, but at rather high costs and low deposition rates. Less costly processing routes are opened by thermal spraying or sol-gel techniques, however, these cannot guarantee the required phase purity or absence of remnants from the binder. As solid state...
Abstract
View Paper
PDF
Due to its suitable semiconductor band gap energies and associated visible light absorption, bismuth vanadate offers high photon efficiencies in solar photo-anodes, enabling green hydrogen generation in photoelectrochemical water splitting cells. Respective bismuth vanadate films have to ensure high efficiencies in electron / hole pair generation, and sufficiently high rates of charge transfer, for both, electrons to the conducting substrate, as well as holes to the electrolyte. Thus, tuning of coating properties has to aim for high phase purity and good layer integrity. So far, respective films are mainly produced by thin film techniques, but at rather high costs and low deposition rates. Less costly processing routes are opened by thermal spraying or sol-gel techniques, however, these cannot guarantee the required phase purity or absence of remnants from the binder. As solid state and binderless alternative, Aerosol Deposition (AD) offers several advantages: comparative low costs, high deposition rates, no undesired phase transformations, and no impurities or residues that could reduce the photoelectrochemical activity. Under the scope of this research on photo-electrochemically active bismuth vanadate films, powder sizes were tailored by milling, and spray parameter sets like the process gas pressure were varied, in order to elucidate their influence on microstructure and application properties. Covering a wide parameter range in aerosol deposition allowed for the development of a window of deposition. Most promising combinations for layer build-up were derived. The results on stainless steel substrates were transferred to FTO-coated glass substrates, as needed in backlit cell layouts. For fine tuning of maximum photocurrents, layer thickness and conductivity were then systematically adjusted. Homogeneous large-scale prototypes demonstrate that aerosol deposition is suitable for processing layers for solar energy harvesting.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 1000-1004, May 21–23, 2014,
... of spraying parameters on process yield, deposition rate, microstructure, and hardness. Preliminary results with deposition rates of 5-20 μm/pass and process yields in the range of 35-60% are presented. It is shown that low precursor solution feed rate, high plasma power, and medium atomization gas flow rate...
Abstract
View Paper
PDF
In this study, solution precursor plasma spraying is used to produce LaAlO 3 perovskite topcoats for thermal barrier coating systems. LaAlO 3 solution precursors were prepared by in situ polymerization and were deposited under different conditions in order to determine the effect of spraying parameters on process yield, deposition rate, microstructure, and hardness. Preliminary results with deposition rates of 5-20 μm/pass and process yields in the range of 35-60% are presented. It is shown that low precursor solution feed rate, high plasma power, and medium atomization gas flow rate result in acceptable coating microstructure, although further optimization is needed to achieve adequate hardness.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 370-373, May 3–5, 2010,
..., columnar microstructures deposited from the vapor phase show considerable advantages. Therefore, physical vapor deposition by electron beam evaporation (EB-PVD) is applied to achieve such columnar structured TBCs. However, the deposition rate is low and the line of sight nature of the process involves...
Abstract
View Paper
PDF
The very low pressure plasma Spray (VLPPS) process has been developed with the aim of depositing uniform and thin coatings with large area coverage by plasma spraying. At typical pressures of 100-200 Pa, the characteristics of the plasma jet change compared to conventional low pressure plasma spraying processes (LPPS) operating at 5 – 20 kPa. The combination of plasma spraying at low pressures with enhanced electrical input power has led to the development of the LPPS-TF process (TF = thin film). At appropriate parameters it is possible to evaporate the powder feedstock material providing advanced microstructures of the deposits. This technique offers new possibilities for the manufacturing of thermal barrier coatings (TBCs). Besides the material composition, the microstructure is an important key to reduce thermal conductivity and to increase strain tolerance. In this regard, columnar microstructures deposited from the vapor phase show considerable advantages. Therefore, physical vapor deposition by electron beam evaporation (EB-PVD) is applied to achieve such columnar structured TBCs. However, the deposition rate is low and the line of sight nature of the process involves specific restrictions. In this paper, the deposition of thermal barrier coatings by the LPPS-TF process is shown. It is investigated how the evaporation of the feedstock powder could be improved and to what extend the deposition rates could be increased.
Proceedings Papers
Effects of Powder Characteristics and High Velocity Flame Spray Processes on Cr 3 C 2 -NiCr-Coatings
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 988-995, May 11–14, 2015,
... rate and deposition efficiency. Four commercial Cr 3 C 2 -NiCr powders with spherically shaped particles but different structural features were characterized and deposited by a liquid-fueled and a gas-fueled HVOF and a HVAF process. Deposition rates and efficiencies were determined; all coatings were...
Abstract
View Paper
PDF
Wear protection is one of the major applications of thermally sprayed hardmetal coatings. This paper presents the latest results of a systematic study on the influence of Cr 3 C 2 -NiCr feedstock powder characteristics on coating microstructures and economic parameters like deposition rate and deposition efficiency. Four commercial Cr 3 C 2 -NiCr powders with spherically shaped particles but different structural features were characterized and deposited by a liquid-fueled and a gas-fueled HVOF and a HVAF process. Deposition rates and efficiencies were determined; all coatings were analyzed in as-sprayed condition and selected samples were heat-treated at 800 °C in argon atmosphere. The effects of the feedstock powders and spray processes on the coating characteristics (microstructure, hardness, Young’s modulus and diffusion processes during heat treatment) were studied.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 37-43, September 27–29, 2011,
... Abstract The present study investigates the influence of spray torch handling parameters such as the spray angle, spray distance, track pitch, and gun velocity on the deposition rate and the deposition quality of Atmospheric Plasma Sprayed WC-12Co coatings as well as Twin Wire Arc Sprayed WSC...
Abstract
View Paper
PDF
The present study investigates the influence of spray torch handling parameters such as the spray angle, spray distance, track pitch, and gun velocity on the deposition rate and the deposition quality of Atmospheric Plasma Sprayed WC-12Co coatings as well as Twin Wire Arc Sprayed WSC-Fe coatings. Based on results of light microscopical analysis similarities as well as fundamental differences in the sensitivity of the two spray processes, regarding changes in handling parameters, are discussed. Both coating systems show distinct changes of the deposition rate when varying the handling parameters. An empirical model could be determined to describe the coating deposition. This model enables an optimization of path planning processes by reducing the number of optimization loops. However, the coatings show visible changes in the microstructure, which have to be taken into consideration in order to guarantee the production of high quality coatings.
1