Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11
Rapid solidification
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 67-73, April 29–May 1, 2024,
Abstract
View Paper
PDF
In cold gas spraying, successful bonding occurs when particle impact velocities exceed the critical velocity. The critical velocity formula depends on material properties and temperature upon impact, relying mainly on tabulated data of bulk material. However, rapid solidification of powder particles during gas atomization can result in strengths up to twice that of bulk materials, causing an underestimation of the critical velocity. Thus, a re-adjustment of the semi-empirical calibration constants could supply a more accurate prediction of the requested spray conditions for bonding. Using copper and aluminum as examples, experimentally determined particle strengths for various particle sizes were 43% and 81% higher than those of the corresponding soft bulk materials. Cold gas spraying was performed over a wide range of parameter sets, achieving deposition efficiencies ranging from 2% to 98%. Deposition efficiencies were plotted as functions of particle impact velocities and temperatures, as calculated by a fluid dynamic approach. By using deposition efficiencies of 50%, the critical velocities of the different powders and the corresponding semi-empirical constants were determined. Based on particle strengths, the results reveal slight material-dependent differences in the mechanical pre-factor. This allows for a more precise description of individual influences by particle strengths on critical velocities and thus coating properties. Nevertheless, the general description of the critical velocity based on bulk data with generalized empirical constants still proves to be a good approximation for predicting required parameter sets or interpreting achieved coating properties.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 122-130, May 24–28, 2021,
Abstract
View Paper
PDF
Three different coatings were deposited using the Detonation Gun Spraying (DGS) technology from steel powders alone, and steel powers mixed with Fe3C and SiC particles, respectively. The microstructural characteristics of these coatings were examined and the hardness of each type of coating was studied. The morphology and structure of the feedstock powders were affected by the exposure to high temperature during the spraying process and rapid solidification of steel powders that resulted in the formation of an amorphous structure. The unreinforced steel coating had the highest hardness among the three types of coatings, possibly due to a higher degree of amorphization in the coating compared to the other two samples. The microstructural observation confirmed the formation of dense coatings with a layered structure with good connectivity between layers with minimum defects and porosities in the interfacial regions.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 79-84, June 7–9, 2017,
Abstract
View Paper
PDF
Epitaxial grain growth during the rapid solidification of molten TiO 2 in plasma spraying was studied. The crystallographic structure of the TiO 2 splats deposited on rutile and α-Al 2 O 3 substrates at 150, 300 and 500 °C was characterized by high resolution transmission electron microscopy and electron back scattering diffraction. The results reveal that homoepitaxial and hetero-epitaxial TiO 2 splats can be formed at the deposition temperature of 500 °C. Epitaxial growth is significantly influenced by the crystal orientation. It is easier to form an epitaxial TiO 2 splat with a <001> orientation in the direction perpendicular to the substrate surface. In order to explain the formation of epitaxial splat during plasma spraying, a competition mechanism between heterogeneous nucleation and epitaxial growth was proposed. It was indicated that the face (001) of rutile crystal exhibits the largest growth velocity, which is conducive to form an epitaxial splat for the melt with a largest undercooling degree. In addition, the effect of deposition temperature and crystalline orientation on the epitaxy was simulated. The simulation results are in agreement with the experimental observations.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 380-381, June 7–9, 2017,
Abstract
View Paper
PDF
Environmental barrier coatings (EBC) are currently being investigated to protect ceramic matrix composite (CMC) turbine engine components in water-vapor rich combustion environments. Dense, crack-free, uniform and well-adhered coatings are demanded for this purpose. This paper represents an assessment of different thermal spray techniques for deposition of Yb 2 Si 2 O 7 and silicon (Si) EBC layers. Plasma spraying of refractory silicates is known to be complicated by undesired glass transition due to rapid solidification as well as evaporation of Si-bearing species during spraying. Plasma spraying of low-density Si also requires careful optimizations as it tends to oxidize during spraying, particularly at atmospheric conditions. Bearing these problems in mind, the Yb 2 Si 2 O 7 coatings were deposited by atmospheric plasma spraying (APS), high-velocity oxygen-fuel spraying (HVOF), and plasma-spray physical vapor deposition (PS-PVD) techniques. As-sprayed microstructure, amorphous content and phase composition of the coatings were analyzed. Based on the findings, the advantages and disadvantages of each method over other techniques are discussed with respect to process parameters and material properties.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 137-139, May 10–12, 2016,
Abstract
View Paper
PDF
A transition in the flattening behavior of thermally sprayed metals has been observed in previous studies. It has been proposed that ultra-rapid cooled chill structure preferentially formed at the bottom part of the splat may play a role in the generation of disk-shaped metallic splats. The applicability of this hypothesis to other materials was verified experimentally for several ceramic oxides. To accomplish this, Al 2 O 3 , Y 2 O 3 , and YSZ particles were plasma sprayed onto stainless steel substrates and the fraction of disk-shaped splats was measured as a function of substrate temperature. Splat microstructure was also examined. Unique amorphous and chill structures were observed in the bottom portion of Al 2 O 3 and Y 2 O 3 splats, indicating that similar formation mechanisms may be at work. However, only a columnar microstructure was observed in the YSZ splats, which calls for additional study.
Proceedings Papers
Phase Selection During Rapid Solidification of Plasma-Sprayed Alumina Splats on an Alumina Substrate
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 438-443, May 21–23, 2014,
Abstract
View Paper
PDF
In earlier experiments, plasma-sprayed Al 2 O 3 coatings were deposited on preheated Al 2 O 3 substrates to study the effect of substrate temperature on splat formation and phase transformations. The aim of the present work is to develop a model to better understand the factors that affect phase selection during the solidification of Al 2 O 3 splats. A model based on one-dimensional heat transfer and classic nucleation theory is presented and used to simulate the rapid solidification process and the influence of process parameters on phase selection. The model accounts for under-cooling phenomena, heterogeneous nucleation, and nucleation kinetics. The findings indicate that the relationship between initial substrate temperature and phase selection is primarily based on the catalytic effect of the alumina substrate on the nucleation of Al 2 O 3 phases as a function of contact angle.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 642-647, May 3–5, 2010,
Abstract
View Paper
PDF
Spreading and rapid solidification behavior of millimeter-scale molten drops of 8 wt.% yttria-stabilized zirconia (YSZ) has been experimentally studied utilizing a novel splittable aerodynamic levitator (ADL). The focus was especially on the effect of initial undercooling on the splat formation. An YSZ sphere approximately 2.3 mm in diameter was levitated in a splittable ADL nozzle and melted by a carbon dioxide laser. The molten drop was dropped by splitting the ADL nozzle and impacted on a substrate 15 cm below at a speed of 1.7 m/s. The spreading and solidification behavior of the impacting drop was observed with a high-speed digital video camera. The undercooling of YSZ drops reached to more than 500 K at a containerless state, and the solidification rate was on the order of 1 m/s at this state. When drops were dropped at superheated states, the drop solidified after flattening completed. Meanwhile, when impacted at large undercooling, the drop spreading was suppressed by the solidification. Drastic difference was observed when a drop was impacted on a substrate covered with acetone liquid. The drop was splashing, recoiling, and rebounding despite fact that splashing would not occur at this impact condition.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 456-460, June 2–4, 2008,
Abstract
View Paper
PDF
The impact and solidification history of individual YSZ particles has been the subject of many experimental and theoretical studies. Yet it is customary to assume that solidification occurs at the equilibrium temperature. Furthermore, the diffusion of the solute (yttria) in the liquid phase during solidification of a splat has not been considered. Using our model, we study non-equilibrium effects during the rapid solidification of a molten YSZ particle, by solving the so-called hyperbolic equations for heat and mass transfer. The hyperbolic model predicts the interface undercooling (due to thermal and solutal effects) and velocity as a function of time, as well as the yttria redistribution within the solid phase. Results are then compared to corresponding ones that we obtained from a parabolic model, in order to assess the extent to which YSZ solidification is influenced by non-equilibrium effects. Results indicate that these effects are limited to the early part of the solidification process when undercooling is most significant. At this stage, the interface velocity is unsteady, and solute redistribution is most evident. As solidification decelerates, the non-equilibrium effects wane and solidification can then be properly modeled as an equilibrium process.
Proceedings Papers
Properties and Characterization of Thermal Sprayed Coatings and a Review of Recent Research Progress
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 539-550, May 25–29, 1998,
Abstract
View Paper
PDF
Some of the recent research progress concerning the structure and properties of thermal sprayed coatings are reviewed. Structures of coatings are classified into three classes of hierarchy, i.e., layer structures, inter-splat structures and intra-splat structures. Important progress in the study and coatings development in each class is described. These include coatings developed to take advantage of the microstructure due to rapid solidification, such as amorphous and extension of solid state solubility, and characterization of porosity and how it is affected by process parameters. Then, stress generation during thermal spray is compared between plasma spray and HVOF spray. Particular attention is given to the importance of thermal and mechanical interactions of sprayed particles with the substrate and coating surface, which determine the nature of interlamellar bonding and that of microscopic stress.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 635-643, September 15–18, 1997,
Abstract
View Paper
PDF
A numerical model has been developed to study the rapid solidification of an alumina splat in thermal spray deposition. The model focuses on the melt undercooling, the selection of the various phases of Al 2 O 3 , and the subsequent non-equilibrium rapid solidification process. A thin molten layer is assumed to be brought into contact with the substrate at time t = 0. One-dimensional heat transfer is considered through splat and substrate along with a thermal contact resistance between them. The classical theory of nucleation kinetics is used to determine the nucleation temperature, assuming that nucleation takes place heterogeneously on the substrate surface. The most likely nucleated crystalline phase is investigated, based on the nucleation kinetics of various phases. Once the particular phase is identified and the nucleation temperature is calculated, the solidification starts assuming a planar interface between the solid and the liquid. Non-equilibrium kinetics of the chosen phase is applied at the moving interface to calculate the interface velocity from the interface melt undercooling. In this paper, the effect of splat variables on the solidification and cooling process of the splat are analyzed. Special attention is paid to the value of the wetting angle between the growing nucleus and the substrate, which affects greatly the nucleation temperature.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 379-385, October 7–11, 1996,
Abstract
View Paper
PDF
The in-flight modification of MoSi 2 powders has been carried out by using an Ar-H 2 induction plasma. Reactor pressure, powder feed rate and plate power level were taken as the experimental parameters to alter the thermal history of the injected powder particles. Metastable hexagonal structure of P-MoSi 2 is the major phase observed in the induction plasma treated molybdenum disilicide powders, the stable phase of tetragonal structure of α-MoSi 2 usually retains approximately 30 wt.%. Following the change in experimental condition and the deviation from stoichiometry in raw materials, low silicides, Mo 5 Si 3 and Mo 3 Si, and free Si were observed. The formation of these phases are explained in terms of metastable eutectic reaction during rapid solidification processing. The relationship between the quantities of all these phases and the experimental conditions has been discussed.