Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Grain growth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 236-240, May 11–14, 2015,
Abstract
View Paper
PDF
Tungsten carbide coatings are often applied to improve surface properties such as wear, high temperature degradation, and corrosion resistance. Zirconia coatings have also been used extensively in various industries due to their excellent tribological and insulation properties combined with high stiffness. It is speculated that adding zirconia to tungsten carbide may result in a coating with combination of excellent thermal and mechanical properties of constituents. In the current study, a powder mixture of 50 wt. % WC-Ni and 50 wt. % ZrO2-Y2O3 deposited on a low carbon steel substrate using atmospheric plasma spray technique. The microstructural evolution of deposited sample was investigated. Splat boundaries, micro cracks, pore morphology conversion, and grain growth mechanism were elucidated comprehensively. Results indicated a good adhesion between two different major components. No porosity formed due to mismatch between zirconia and tungsten carbide. This study pays special attention to the dependency of the microstructural characteristics to the phase distribution within the coating.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 363-369, May 11–14, 2015,
Abstract
View Paper
PDF
The effect of substrate template effect on the crystalline structure of plasma sprayed 8YSZ (8mol%Y2O3) splats was investigated by high resolution transmission electron microscopy (HR-TEM) examination of FIB-processed splat samples. 8YSZ splats were deposited by the atmospheric plasma spraying (APS) on the polished sintered tetragonal structure substrate (3YSZ) and cubic structure substrate (8YSZ) at different preheating temperatures. The focused ion beam (FIB) was utilized to prepared TEM cross-sectional sample of splats. The crystalline structures of both the splat and the underlying substrate were examined by HRTEM. Results showed that the 8YSZ splats deposited on the polished sintered cubic structure 8YSZ substrate at a substrate surface temperature of 900°C exhibited cubic structure and the epitaxial grain growth was confirmed between the crystalline of splat grain and immediately underlying cubic crystalline substrate grain. Moreover, epitaxial grain growth was confirmed between the crystalline of splat grain and the tetragonal structure substrate when substrate surface temperature was increased to 1200°C. The present results suggest that the crystalline structure formation of 8YSZ splats produced by plasma spraying was affected by the substrate template effect.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 676-680, May 21–24, 2012,
Abstract
View Paper
PDF
Alumina splats were deposited on the polished single crystal alumina substrates with two different crystalline facet orientations of [001] and [110] by atmospheric plasma spraying (APS) at a substrate preheating temperature of 900°C to examine the epitaxy during splat cooling. The cross-sectional samples for high resolution transmission electron microscopy examination was prepared by focused ion beam assisted scanning electron microscopy (FIB-SEM). The results show that the whole splats with a thickness ranging from ~600 to ~1000nm exhibited the same crystalline structure as the substrate. Moreover, the splat deposited on the single crystalline alumina substrates exhibited exactly the same orientation as the substrate. The results evidently indicate that the epitaxial grain growth occurs after alumina droplets impact on single crystal alumina substrate. The present results suggest that the crystalline structure of alumina deposit formed by plasma spraying can be possibly controlled by the substrate preheating temperature.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 905-908, May 8–11, 2000,
Abstract
View Paper
PDF
Layers of high-purity copper and iron produced by cold gas-dynamic spraying have been thermally processed to induce recrystallization and grain growth. In the case of copper deposits, the as-sprayed structure could be "pinned" by arrays of Cu2O particles present on the surfaces of the feedstock powder, however copper powders of higher purity and sphericity yielded sprayed structures which could be annealed to induce recrystallization and grain growth. The higher purity copper compacts exhibited a morphological change in fracture from a brittle, intraparticle mode in the as-deposited condition, to a ductile, "cup-and-cone" morphology in the annealed condition. For compacts produced from water atomized iron, annealing at sub-critical temperatures produced recrystallization and grain growth as found with copper, and thermal processing in the austenitic region resulted in altogether new and coarser grain structures upon cooling. Ease of thermal processing of cold-sprayed materials may offer additional processing routes for engineered surfaces and functional devices produced in this manner.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1265-1269, May 25–29, 1998,
Abstract
View Paper
PDF
Nanocrystalline Inconel 718 and Ni powders were prepared using two approaches: methanol and cryogenic attritor milling. High velocity oxy-fuel (HVOF) spraying of milled Inconel 718 powders was then utilized to produce Inconel 718 coatings with a nanocrystalline grain size. Isothermal heat treatments were carried out to study the thermal stability of the methanol milled and cryomilled Inconel 718 powders, as well as the HVOF Inconel 718 coatings. All nanocrystalline Inconel 718 powders and coatings studied herein exhibited significant thermal stability against grain growth as evidenced by a grain size around 100 nm following annealing at 1273 K for 60 min. In the case of the cryomilled nanocrystalline Ni powders, isothermal grain growth behavior was studied, from which the parameters required for the prediction of the microstructural evolution during a non-isothermal annealing were acquired. The theoretical simulation of grain growth behavior of nanocrystalline Ni during non-isothermal annealing conditions yields results that are in good correspondence with the experimental results.