Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Beryllium
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1177-1182, May 15–18, 2006,
Abstract
View Paper
PDF
The exceptional properties of beryllium (Be) including low density and high elastic modulus, make it the material of choice in many defense and aerospace applications. However, health hazards associated with Be material handling limit the applications that are suited for its use. Innovative solutions that enable continued use of Be in critical applications while addressing worker health concerns are highly desirable. Plasma Transferred Arc solid freeform fabrication is being evaluated as a Be fabrication technique for civilian and military space based components. Initial experiments producing beryllium deposits are reported here. Deposit shape, microstructure and mechanical properties are reported.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 122-125, May 2–4, 2005,
Abstract
View Paper
PDF
The development of beryllium first wall components for future magnetic confinement fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) is a topic of great importance as the ITER construction phase is about to begin. The beryllium components must be able to survive the harsh plasma environment for extended periods of time during operation. Furthermore, cost and detrimental health effects must be kept to a minimum during the fabrication and operation processes. The work described here details the requirements for ITER first wall components and describes experiments to produce beryllium high heat flux components by plasma spray deposition. Experimental parameters and characterization results from the components are presented. Results of initial high heat flux testing under electron beam irradiation show performance exceeding that required for ITER first wall components.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 735-739, October 7–11, 1996,
Abstract
View Paper
PDF
Plasma spraying is under investigation as a method for in-situ repair of damaged beryllium and tungsten plasma facing surfaces for the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device, and is also being considered as a potential fabrication method for beryllium and tungsten plasma-facing components for the first wall of ITER. Investigators at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure property relationship between the as-deposited microstructures of plasma sprayed beryllium coatings and the resulting thermal properties of the coatings. In this study, the effect of the initial substrate temperature on the resulting thermal diffusivity of the beryllium coatings and the thermal diffusivity at the coating/beryllium substrate interface (i.e. interface thermal resistance) was investigated. Results have shown that initial beryllium substrate temperatures greater than 600°C can improve the thermal diffusivity of the beryllium coatings and minimize any thermal resistance at the interface between the beryllium coating and beryllium substrate.