Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Bismuth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 440-446, May 24–28, 2021,
Abstract
View Paper
PDF
Stabilized bismuth oxide with fluorite structure is considered a promising electrolyte material for intermediate temperature solid-oxide fuel cells (SOFCs) due to its high oxygen ion conductivity. The ternary system, Bi2O3-Er2O3-WO3, is of particular interest because it is ionically conductive as well as thermally stable. This study investigates the quality of Bi2O3-Er2O3-WO3 (EWSB) electrolyte produced by plasma spraying. The phase structure and cross-sectional microstructure of plasma-sprayed EWSB were characterized by XRD and SEM. The as-sprayed EWSB was found to have a dense microstructure with well bonded lamellae. XRD analysis showed the formation of EWSB with δ-phase and a trace of β-phase, while the β-phase disappeared after annealing at 750°C for 10h. Electrical property tests revealed that the plasma-sprayed electrolyte also had excellent ionic conductivity (0.26 S cm-1 at 750 °C), making it a strong candidate for use in SOFCs at intermediate temperatures.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 394-399, May 26–29, 2019,
Abstract
View Paper
PDF
Dense, nanostructured bismuth vanadate thin films were successfully deposited by aerosol deposition at room temperature. Aerosol deposition offers an alternative route for fabrication of photoactive metal oxide coatings as no binders or sintering processes are employed. A micron-sized bismuth vanadate powder was used to spray photoactive films (< 1 µm) on conductive fluor-doped tin oxide layers on glass and titanium substrates. The thin films are photocatalytically active under solar light due to the band gap energies of bismuth vanadate, and their nanosized structure increases surface area and catalytic activity. The coatings obtained were assessed based on microstructure, layer thickness, mechanical integrity, and photoelectrochemical activity.