Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Carbon fiber-reinforced epoxy composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 222-228, May 22–25, 2023,
Abstract
View Paper
PDF
Metallization of polymers and fiber-reinforced polymer composites is gaining attention due to the widespread application of these components in various industries, such as wind energy, aerospace, and automotive industries. Cold spray is a promising new technique to achieve the metallization of polymer and fiber-reinforced polymer composites. This work investigates the deposition mechanisms of polymer-coated metallic particles on polymer-based substrates by finite element analyses. Impact mechanics of PEEK-coated nickel particles impacting PEEK and carbon fiber-reinforced PEEK substrates are modeled. Results show the prominence of mechanical interlocking of metallic particles in the substrate, which occurs due to their entrapment inside the substrate, caused by the high energy impact-induced welding of scraped PEEK coating. The PEEK coating acts as a cushioning component, effectively mitigating the impact energy of the metallic component. The scraped PEEK coating also accumulates on the upper half of the particle, forming a cap welded to the substrate and sealing the metallic particle inside. It is observed that the depth of the carbon fiber mat in the substrate affects the mechanism and the success of deposition.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 280-287, May 22–25, 2023,
Abstract
View Paper
PDF
A previous study on the pull-off testing of metallized carbon fiber reinforced polymers (CFRPs) via cold spray showed that better adhesion strengths could be obtained when features such as carbon fibers or surfacing elements were present, by providing potential mechanical interlocking features. In this work, the effect of the fiber orientation on the deposition and bonding of the metallic coating to the thermoplastic composite substrate is explored. Pure Sn powder was cold sprayed onto two thermoplastic Polyether-Ether- Ketone (PEEK) CFRP substrates, containing carbon fibers with different orientations: one had fibers in the plane of the substrate (uni-directional tape), while the other had fibers mostly perpendicular to the substrate (ZRT film). Characterization of the coatings was performed via scanning electron microscopy (SEM) and confocal microscopy, and some aspects of mechanical testing (namely wear and scratch testing) were carried out to assess the effect of the substrate on the properties of the coatings.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 75-78, May 24–28, 2021,
Abstract
View Paper
PDF
Because of their high specific strength, carbon fiber reinforced plastics (CFRPs) are widely used in the aerospace industry. Metallization of CFRP by cold spraying as a surface modification method can improve the low thermal resistance and electrical conductivity of CFRP without the need for high heat input. Herein, we cold spray a Sn coating on cured CFRP substrates and examine the Sn/epoxy interface. The results suggest that the Sn coatings are successfully obtained at a gas temperature of 473 K and indicate no severe damage to the CFRP substrates. The stress and plastic strain distributions at the cross-section of the Sn/CFRP interface when a Sn particle is impacted onto the CFRP substrate are obtained using the finite element method.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 157-166, May 24–28, 2021,
Abstract
View Paper
PDF
In previous studies at McGill University, tin was successfully cold sprayed onto carbon fiber reinforced polymers (CFRPs). A “crack-filling” mechanism was described as the deposition mechanism that allowed deposition of tin onto the CFRP. Improving the coating conductivity for lightning strike protection (LSP) purposes was achieved by adding other metal powders (aluminum, copper, zinc) to tin and cold spraying on the CFRP. At the same time, it was noticed that the addition of this secondary component (SC) provided an increase in deposition efficiency (DE), tamping was initially hypothesized to explain this improvement, thus prompting a study solely on the effect of SC hardness, which is reported elsewhere in this conference. However, it is recognised that other powder characteristics may also be influencing the DE. Thus, in this study, SCs with a wider variety of particle sizes, morphologies, densities and hardness values were mixed with tin and sprayed on CFRPs. The effect of SC properties on tin deposition is discussed and an optimal combination of SC properties for cold spraying of tin is suggested.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 611-615, May 24–28, 2021,
Abstract
View Paper
PDF
A previous study showed that Cu can be cold sprayed onto carbon fiber-reinforced polymers (CFRPs) if a Cu interlayer is deposited prior to low-pressure cold spraying. In this present study, Cu was cold sprayed onto CFRP substrates that were coated with either Sn (cold spray) or Ni electroplating. Two layers of Cu powder were also cold sprayed onto a Cu-plated CFRP substrate to investigate the effect of a second particle layer on impacting particles. Test results showed that the relative hardness between the particle and substrate has a major effect on deformability, impact mode, and deposition efficiency (DE), which explains why Cu could not be cold sprayed onto Sn or Ni interlayers and why the deposition efficiency of Cu-on-Cu substrates is lower than that of one pass spraying. In summary, the results suggest that Cu can be successfully cold sprayed at low pressures onto electroplated Cu due to their similarity in hardness.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 578-585, May 26–29, 2019,
Abstract
View Paper
PDF
Single component tin coatings have been successfully cold-sprayed onto carbon fiber reinforced polymers. Coatings with mixed metal powders have also been sprayed to improve conductivity for lightning strike protection purposes. Test results indicate a noticeable improvement in deposition efficiency with the addition of a secondary metallic powder. This study examines the effect of aluminum powder additions in tin coatings. Following cold spraying of various Sn-Al mixtures over a wide range of gas pressures, unusual coating morphologies were observed. The study of these morphologies reveals two distinct deposition phases depending on spray pressure. The presence of submicron particles also supports the occurrence of a powder melting phenomenon during the spraying process.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 196-200, May 10–12, 2016,
Abstract
View Paper
PDF
In this work, metallic powders are applied to carbon fiber reinforced polymer (CFRP) substrates by low-pressure cold spraying. The coatings as well as the coating-substrate interfaces are characterized and the deposition mechanism is determined. It is shown that gas temperatures above 300°C are required for the continuous deposition of tin. These temperatures bring about partially melting, which facilitates adhesion. Accordingly, a “crack filling” mechanism is proposed to explain the deposition.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 618-623, May 4–7, 2009,
Abstract
View Paper
PDF
The present work probes the deposition of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites using pulsed gas dynamic spraying. Well-consolidated and well-adhered coatings of zinc and copper were successfully applied and initial trials with higher melting point metals have been promising. Two key aspects of the technique are the low temperatures involved and the presence of embedded ductile particles in the substrate. The embedded particles promote adhesion and eliminate the need for surface preparation procedures along with associated risks. The hardness and porosity of the zinc coatings deposited on polymer matrix composites were found to be comparable to that of similar coatings on metallic substrates.