Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 64
Reinforcement structures
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 40-48, April 29–May 1, 2024,
Abstract
View Paper
PDF
The polymer cold spray (CS) process has been demonstrated as a promising coating and repair technique for fiber-reinforced polymer composites (FRPs). However, a noticeable variation in coating thickness (herein referred to as checkerboard pattern) often occurs in the initial (bond) layer of low-pressure CS deposition. The checkerboard pattern occurs due to essentially periodic variations in matrix thickness above the subsurface fiber weave pattern. When the bond layer exhibits the so-called checkerboard pattern, the CS deposition for subsequent layers may be negatively affected in terms of deposition efficiency, porosity, adhesion, surface roughness, and surface thickness consistency. The present work compares results of both numerical simulations and experimental studies performed to reveal the governing mechanisms for and elimination of checker-boarding. Numerical single particle impact simulations are conducted to observe various thermomechanical domains for CS impact on the FRP surface in different regions of the composite material. Complementary experimental CS studies of exemplar powders onto FRPs with various surface interlayer thicknesses are also presented. Experimental analyzes of deposits include microstructural observations to compare against the simulations while also providing practical strategies for the elimination of checkerboarding effects.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 365-375, April 29–May 1, 2024,
Abstract
View Paper
PDF
The performance and, as a consequence, the application of functionalized fiber-reinforced plastic (FRP) are limited due to low adhesion strengths between the metal coating and the polymer-based substrate. Common pre-treatment methods, to successfully apply a metal coating by thermal spraying on commercial FRP, are mechanical blasting, etching or thermal treatment. Moreover, additional layers made of metal wire or sand have been integrated into the FRP surface. A promising material-sensitive pre-treatment method for FRP substrates is laser micro structuring. This method avoids uncontrolled damage of surface-near fibers and offers an increased interface area. Unique for pulsed laser structuring is the opportunity to achieve a clamping effect between the functional coating and the FRP by a trench-like structure.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 521-527, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cold spray metallization of carbon fiber-reinforced polymers (CFRP) has attracted increasing interest for potential applications in providing lightning strike protection (LSP) to aircraft. This study aims to assess the LSP performance of cold-sprayed copper and aluminum coatings on a Polyaryletherketone (PAEK)-based carbon fiber-reinforced thermoplastic polymer (CFRTP). Lightning strike tests with a peak current of 70 kA were performed on full-surface copper and aluminum coatings, and grid-patterned aluminum coatings. The lightning strike process was captured by a high-speed camera to investigate the fracture behavior of the cold-sprayed CFRTP specimens. Results revealed that the full-surface copper coating, which had higher electrical resistivity and was thinner than the aluminum coating, experienced explosive coating fractures. Conversely, the aluminum coating incurred less damage, effectively protecting the underlying CFRTP from lightning current without visible ply lift or carbon fiber fracture. Furthermore, grid-patterned aluminum coatings also exhibited LSP capabilities, with their denser mesh reducing both the area of coating fractures and the thermal damage to the CFRTP surface.
Proceedings Papers
Dilkaram S. Ghuman, Marie-Laurence Cliche, Bruno C. N. M. de Castilho, Fadhel B. Ettouil, Christian Moreau ...
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 643-651, April 29–May 1, 2024,
Abstract
View Paper
PDF
Carbon fiber (CF) composites are widely used in the aerospace industry due to their light weight and favorable mechanical properties. Nevertheless, applying protective coatings (e.g. erosion resistance) through thermal spraying presents specific challenges with defects such as distortion, oxidation, and poor coating adhesion. This study presents a new technique that combines electroless plating processes and thermal spray for depo-siting metals onto polymer-reinforced composites. Samples of low melting polyaryletherletone (LMPAEK) thermoplastic polymer reinforced with carbon fibers aligned in the normal direction (ZRT film) are plated (with copper, silver, or nickel) to provide an adhesion layer for the thermal spray processes. Subsequently, pure tin and titanium (i.e. Ti-6Al-4V) is deposited on the samples using High Velocity Air-Fuel (HVAF) and atmospheric plasma spray (APS) processes. Cross-sections of the resulting coatings are compared, and the materials are characterized for surface roughness, cracks and pores.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 208-213, May 22–25, 2023,
Abstract
View Paper
PDF
Direct cold spray deposition of Cu was not possible on carbon fiber-reinforced polymer composites (CFRPs) with thermosetting polymer as the matrix material due to substrate erosion. In a recent study, an epoxy-CFRP was successfully metallized through a hybrid coating process that involves three consecutive coating steps: (i) electroless deposition, followed by (ii) electrodeposition, and finally (iii) cold spray. In this present study, for the reduction of the coating process steps, a duplex metallic coating was developed on an epoxy-CFRPs by cold spray deposition of tin (Sn) to fabricate a continuous metallic interlayer, followed by Cu electrodeposition (i.e., SnCS-CuEP). The tensile adhesion bond strength and the electrical resistivity of the duplex coating were investigated. It was found that cold-sprayed Sn coating failed adhesively in the absence of the electrodeposited Cu coating. After the electrodeposition of Cu, cohesive failure of the cold-sprayed Sn coating took place. A “dissolution-deposition” mechanism has been established to explain the cohesive failure of the coldsprayed Sn coating after electrodeposition. The cohesive strength of the Sn coating is slightly higher than that of the previously fabricated three-step coating system. The electrical conductivity of the electrodeposited Cu coating was found to be 90% of bulk Cu. These results suggest that a duplex SnCS-CuEP coating can be fabricated on epoxy-CFRPs with relatively high electrical conductivity and slightly enhanced adhesion properties as compared to multilayered coatings fabricated using a three-step electroless deposition-electrodeposition-cold spray process.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 222-228, May 22–25, 2023,
Abstract
View Paper
PDF
Metallization of polymers and fiber-reinforced polymer composites is gaining attention due to the widespread application of these components in various industries, such as wind energy, aerospace, and automotive industries. Cold spray is a promising new technique to achieve the metallization of polymer and fiber-reinforced polymer composites. This work investigates the deposition mechanisms of polymer-coated metallic particles on polymer-based substrates by finite element analyses. Impact mechanics of PEEK-coated nickel particles impacting PEEK and carbon fiber-reinforced PEEK substrates are modeled. Results show the prominence of mechanical interlocking of metallic particles in the substrate, which occurs due to their entrapment inside the substrate, caused by the high energy impact-induced welding of scraped PEEK coating. The PEEK coating acts as a cushioning component, effectively mitigating the impact energy of the metallic component. The scraped PEEK coating also accumulates on the upper half of the particle, forming a cap welded to the substrate and sealing the metallic particle inside. It is observed that the depth of the carbon fiber mat in the substrate affects the mechanism and the success of deposition.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 280-287, May 22–25, 2023,
Abstract
View Paper
PDF
A previous study on the pull-off testing of metallized carbon fiber reinforced polymers (CFRPs) via cold spray showed that better adhesion strengths could be obtained when features such as carbon fibers or surfacing elements were present, by providing potential mechanical interlocking features. In this work, the effect of the fiber orientation on the deposition and bonding of the metallic coating to the thermoplastic composite substrate is explored. Pure Sn powder was cold sprayed onto two thermoplastic Polyether-Ether- Ketone (PEEK) CFRP substrates, containing carbon fibers with different orientations: one had fibers in the plane of the substrate (uni-directional tape), while the other had fibers mostly perpendicular to the substrate (ZRT film). Characterization of the coatings was performed via scanning electron microscopy (SEM) and confocal microscopy, and some aspects of mechanical testing (namely wear and scratch testing) were carried out to assess the effect of the substrate on the properties of the coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 323-329, May 22–25, 2023,
Abstract
View Paper
PDF
The application of thermally sprayed coatings on CFRPs has gained great interest to enhance thermal and tribological properties and several processes have been optimized. However, for the coating of internal surfaces of tubes there is no sufficient technical solution. This paper introduces a novel and unique process technique for coating the internal surfaces of CFRP tubes using the transplantation of thermally sprayed coatings. A negative shape tube with defined surface and material properties was used as a mandrel and coated using atmospheric plasma spraying (APS). The CFRP was then produced using filament winding onto the coating, and after curing, the specimen was separated from the mandrel. With this process innovation, CFRP tubes with internal ceramic or metallic coatings can be produced without any thermal degradation of the polymeric matrix or damage to the carbon fibers. Compared to conventional coating methods, this novel process technique has several advantages. It allows for the production of internal coatings with low roughness of R z = 10 μm as sprayed without post-processing. The specimens also have a significantly lower tendency to corrode compared to conventional coated CFRPs. A high adhesion strength of the coatings of 15.9 MPa was achieved and the hardness of the internal ceramic coating is 918 HV0.1
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 742-747, May 22–25, 2023,
Abstract
View Paper
PDF
The promising structural properties of fiber-reinforced polymer composites make them widely popular in the energy, automotive, defense, and aerospace industries. One of the most challenging limitations associated with the use of composites in the above applications is the maintenance and repair protocols. In this study, a novel cold spray approach is introduced as an efficient alternative for the structural repair of fiber composites. Damages in the form of circular tapered holes are created in glass fiber-reinforced polymer (GFRP) composite substrates using a conventional drilling process. The in-lab created damages are repaired by cold spray with thermoplastic (nylon 6) and thermoset (polyester epoxy resin, PER) materials. The fundamental adhesion mechanisms are investigated through microstructural observations, which point to adiabatic shear instability due to the occurrence of severe plastic deformation as a governing factor. Microstructural examinations also suggest that no significant fiber damage or surface degradation occurs after the repair by cold spray. Mechanical tests performed on neat, damaged, and repaired composites reveal the partial recovery of structural performance and load-bearing capacity after cold spray repair. Results obtained in this work highlight cold spray as a promising alternative technique for onsite structural repair of composite structures with minimal pre/post-processing requirements.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 100-122, May 4–6, 2022,
Abstract
View Paper
PDF
Tin was successfully cold sprayed onto carbon fiber reinforced polymers (CFRPs) in previous studies at McGill University and a “crack-filling” mechanism was described as the mechanism that allowed deposition of the metal onto the composite counterpart. By adding other metal powders (aluminum, copper, zinc), it was possible to improve the deposition efficiency (DE) of the tin on the CFRP, as well as improve the electrical conductivity of the coating (notably with copper). While the effect of mixing powders with tin, and more notably the effect of the secondary component (SC) properties on the deposition improvement, were more thoroughly addressed in following studies, the question of the properties of these coatings remained. With the perspective of providing a metallic coating to a relatively poorly conductive composite substrate, this study aims to explore the electrical conductivity and the coating strength of cold sprayed tin with other SCs onto CFRPs. An extensive study on fractured surfaces highlighted the importance of the CFRP surface finish, and it was observed that the coating strengths improved with decreasing DE of pure tin.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 314-326, May 4–6, 2022,
Abstract
View Paper
PDF
In order to investigate the potentials to improve the deposition efficiency and to functionalize the polymer-based substrates, six configurations of microparticles Sn, Zn, Al, Sn+Al 2 O 3 , Al+Al 2 O 3 , Cu+Al 2 O 3 were cold sprayed on the substrate of Carbon Fiber Reinforced Polymer (CFRP) composites equipped with Cu-based sublayer or Al-based sublayer. The process conditions were kept unchanged. Microanalysis of sublayers and coatings was performed via a Scanning Electronic Microscope (SEM), the deposition mechanisms of different powders couplings on CFRP substrate were then discussed. The results indicated that although the deposition efficiencies were negative, the systems of Zn, Al and Al+Al 2 O 3 perform better among all the configurations. It was found that the addition of alumina led to a lower deposition efficiency (DE), compared to the corresponding pure coatings. For single-component Sn, Zn and Al powders, they all showed an increasing trend of DE when changing the substrate from Cu-based systems to Al-based systems. The aim of this present work is to elaborate the intrinsic causes of erosion issues and to provide a reference value for picking spraying materials and preparing functionalized CFRP substrates. According to the SEM analysis, the insufficient deformation and escape behaviours of spherical copper powders explained for the difficulty of coating formation. It was noticeable that the surfaces of Al-based systems were more uniform than those of Cu-based ones, due to their desirable deformation abilities. Besides, the significant flattened particles, material mixing and melting phenomenon were observed in Al-involved systems, which would definitely contribute to the adhesive bonding between coating and substrate.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 893-899, May 4–6, 2022,
Abstract
View Paper
PDF
This study aims to develop a metal-based compatibilizing sublayer on a Carbon Fiber-Reinforced Polymer (CFRP) composite to overcome the erosion issue of polymer substrate using the cold spray deposition technique. The objective is to contribute to the in-situ repair of aircraft structures. Two cases of sublayers, i.e., Al-based sublayer (1126 μm thick) and Cu-based sublayer (547 μm thick), have been prepared and co-cured with the CFRP substrates by pressure assisted molding process. Gas-atomized copper powders were deposited on a reference sample of aluminum panel (A-0) and on two functionalized composite substrates (A-1 and C-1) by a high-pressure cold spraying (HPCS) process. The results show that cold spray deposition onto the Al-based sublayer leads to a coating formation whereas the Cu-based sublayer is strongly eroded by the supersonic collision of copper powders. Scanning electronic microscope (SEM) morphologies were used to investigate the HPCS deposition mechanisms on various configurations of substrates. It was found that the high deposition efficiency of case Cu/A-0 was achieved by metallic bonding, evidenced by the significant flattening powders and agglomeration phenomenon of multiple particles. The copper particles of case Cu/A-1, encapsulated by the deformed aluminum powders, could anchor to the substrate via mechanical interlocking, whereas only pure localized fracture of epoxy and exposed broken carbon fibers were observed on the substrate of case Cu/C-1. The results demonstrated the feasibility of an Al-based sublayer-assisted cold spray process for the thermosetting CFRP composite to achieve a successful deposition of copper powders, which also emphasized the necessity to search an optimal material coupling between sublayers and coatings.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 75-78, May 24–28, 2021,
Abstract
View Paper
PDF
Because of their high specific strength, carbon fiber reinforced plastics (CFRPs) are widely used in the aerospace industry. Metallization of CFRP by cold spraying as a surface modification method can improve the low thermal resistance and electrical conductivity of CFRP without the need for high heat input. Herein, we cold spray a Sn coating on cured CFRP substrates and examine the Sn/epoxy interface. The results suggest that the Sn coatings are successfully obtained at a gas temperature of 473 K and indicate no severe damage to the CFRP substrates. The stress and plastic strain distributions at the cross-section of the Sn/CFRP interface when a Sn particle is impacted onto the CFRP substrate are obtained using the finite element method.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 157-166, May 24–28, 2021,
Abstract
View Paper
PDF
In previous studies at McGill University, tin was successfully cold sprayed onto carbon fiber reinforced polymers (CFRPs). A “crack-filling” mechanism was described as the deposition mechanism that allowed deposition of tin onto the CFRP. Improving the coating conductivity for lightning strike protection (LSP) purposes was achieved by adding other metal powders (aluminum, copper, zinc) to tin and cold spraying on the CFRP. At the same time, it was noticed that the addition of this secondary component (SC) provided an increase in deposition efficiency (DE), tamping was initially hypothesized to explain this improvement, thus prompting a study solely on the effect of SC hardness, which is reported elsewhere in this conference. However, it is recognised that other powder characteristics may also be influencing the DE. Thus, in this study, SCs with a wider variety of particle sizes, morphologies, densities and hardness values were mixed with tin and sprayed on CFRPs. The effect of SC properties on tin deposition is discussed and an optimal combination of SC properties for cold spraying of tin is suggested.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 561-568, May 24–28, 2021,
Abstract
View Paper
PDF
One of the main levers to reduce CO2 emissions in cars and trucks is mass and friction reduction, which is often achieved through the use of special coatings. The aim of the present work was to develop metal-ceramic-lubricant composite coatings with the best combination of wear, seizure, fatigue, and thermal resistance. Metal-based coatings incorporating hard particles and solid lubricants were cold sprayed onto steel substrates and the relationship between coating microstructure and tribology was studied. To meet the demanding tribological requirements of heavily loaded engines, the interfaces between the different components were optimized by selecting appropriate feedstock powders and assessing a wide range of process parameters. Alumina-reinforced bronze composite coatings were made from powders with different morphologies. Aggregated ceramic powders were found to be more beneficial in terms of wear than massive powders, and graphite was found to be effective for reducing seizure.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 569-577, May 24–28, 2021,
Abstract
View Paper
PDF
Assemblies containing fiber-reinforced plastic (FRP) and metal parts are typically fastened together via mechanical joining or adhesive bonding. Mechanical joining processes tend to weaken FRP parts by cutting fibers, while adhesives require long cures and often lead to inseparable material compounds. This paper evaluates a new joining method in which plastic parts are laser treated, then metallized via wire-arc spraying, and finally soldered to mating metal parts using a low-temperature process. Due to the effective increase in interface area resulting from laser structuring, bond strengths of up to 15.5 MPa can be achieved.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 611-615, May 24–28, 2021,
Abstract
View Paper
PDF
A previous study showed that Cu can be cold sprayed onto carbon fiber-reinforced polymers (CFRPs) if a Cu interlayer is deposited prior to low-pressure cold spraying. In this present study, Cu was cold sprayed onto CFRP substrates that were coated with either Sn (cold spray) or Ni electroplating. Two layers of Cu powder were also cold sprayed onto a Cu-plated CFRP substrate to investigate the effect of a second particle layer on impacting particles. Test results showed that the relative hardness between the particle and substrate has a major effect on deformability, impact mode, and deposition efficiency (DE), which explains why Cu could not be cold sprayed onto Sn or Ni interlayers and why the deposition efficiency of Cu-on-Cu substrates is lower than that of one pass spraying. In summary, the results suggest that Cu can be successfully cold sprayed at low pressures onto electroplated Cu due to their similarity in hardness.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 708-715, May 24–28, 2021,
Abstract
View Paper
PDF
Developing effective heating systems to prevent ice accretion on the surface of wind turbine blades and aircraft wings is of great significance for extreme cold environments. However, due to high velocity impingement of water droplets and solid particles on the surface of these components, an appreciable degree of surface material degradation may occur. In this study, nickel-chromium-aluminum-yttrium (NiCrAlY) was chosen as a metal matrix material for a coating-based heating system. Pure ceramic powders, namely, alumina and titania, and a cermet powder, tungsten carbide-cobalt (WC-12Co), were mechanically admixed with NiCrAlY powder and deposited to fabricate reinforced metal matrix composite (MMC) coatings. The powders were deposited on cylindrical low carbon steel bars by using flame spraying. The specimens were placed in a wind tunnel to conduct a comparative investigation of their erosive wear resistance under water droplet impact. A cold spraying unit was used for solid particle impact erosion tests. The erosive wear rates were quantified by measuring mass loss. The experimentally obtained results showed noticeably lower wear rate in NiCrAlY-WC-12Co and NiCrAlY-titania coatings compared to the other coatings. The results suggest that certain MMC coatings could be effectively employed to decrease the erosion rate of coating-based heating elements.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 765-770, May 24–28, 2021,
Abstract
View Paper
PDF
Boundary layers on surfaces will change from laminar to turbulent flow after a critical length. Due to the differing heat transfer coefficients of laminar and turbulent flow, the point of transition can be detected by heating the surface and measuring surface temperature by thermographic imaging. Locating the transition point is crucial for the aerodynamic optimization of components. In this study, fiber reinforced polymer composites (FRPCs) were chosen as the test substrate. Experiments were conducted using the flame spray process and NiCrAlY coatings. Multilayered coatings consisting of an aluminum bond coat, a layer of alumina as electrical insulation, and a heating layer of titania were fabricated by atmospheric plasma spraying. Free-flight tests were conducted with a functionalized winglet in order to assess the ability of thermally-sprayed heating elements to detect the location of transition of the flow regime. The results showed that the thermally-sprayed elements heat surfaces uniformly, with sufficient radiation losses for thermographic imaging. It was also shown that the change in temperature at the point of transition was readily observable using thermography.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 476-483, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the effect of heat treatment on the microstructure and tribological properties of TiB 2 -reinforced AlSi 10 Mg composite coatings produced by cold spraying. SEM and XRD analysis showed that the microstructure of the feedstock powder was well preserved in the as-sprayed material with uniformly distributed TiB 2 nanoparticles, some aggregated clusters, and a cellular-like network of fine eutectic Si particles embedded in an aluminum matrix. With increasing heat treatment temperature, the Si particles grew larger in size, but significantly fewer in number and a reduction in microhardness was observed due mainly to the elimination of the work hardening effect and coarsening of the Si particles.
1