Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Aluminum-carbide composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 684-689, May 13–15, 2013,
Abstract
View Paper
PDF
In this study, Al-SiC composite coatings are produced by cold spraying ball-milled Al powders with different volume fractions of SiC particles. The morphology and microstructure evolution of the powder during ball milling are evaluated along with the effect of SiC content on the microstructure and wear behavior of the coatings. The results show that dense Al-SiC coatings with different volume fractions of SiC particles can be fabricated by cold spraying and that abrasive wear resistance is improved by raising the volume fraction of SiC particles. Wear surfaces indicate that the predominant wear mechanism is gouging of the soft Al matrix in the early stages and cracking and spalling of SiC particles in the latter stages. The dispersed SiC particles serve to protect the matrix from wear products thus raising the wear resistance of the coatings.