Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Differential thermal analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 637-644, May 4–6, 2022,
Abstract
View Papertitled, Current Trends in the Development of Suspensions and Liquid Precursors for Thermal Spraying: Case of Zn 2 TiO 4
View
PDF
for content titled, Current Trends in the Development of Suspensions and Liquid Precursors for Thermal Spraying: Case of Zn 2 TiO 4
When compared with conventional thermal spraying processes, thermal spraying of suspensions allows to produce coatings with outstanding properties in terms of microstructure, surface topography, and phase compositions, as well as mechanical, electrical or tribological requirements. The use of suspensions as feedstock results in an almost unlimited flexibility in terms of chemical composition of the sprayed coatings. Moreover, thermal spraying of suspensions is a promising technique for processing expensive raw materials. Zn 2 TiO 4 coatings are only one example where the high costs of blended oxide powders as feedstock material hinders the market introduction, whereas outstanding electrical properties and photocatalytic activity of thermally sprayed Zn 2 TiO 4 coatings are of great interest for various industrial applications. In this work, single oxide ZnO and TiO 2 raw materials as well as a Zn 2 TiO 4 feedstock powder were used to develop tailored aqueous suspensions suitable for thermal spraying. To follow the formation of the compositions in the system ZnO-TiO 2 , differential thermal analysis (DTA) and thermal gravimetry (TG) measurements were performed. Preparation routes of stable suspensions with low sedimentation rates, low viscosity and good flowability are discussed. Exemplary microstructures and phase compositions of sprayed coatings are shown. In all sprayed coatings, the Zn 2 TiO 4 phase has been formed during Suspension High Velocity Oxygen Fuel Spraying (S-HVOF). This work demonstrates the potential to develop appropriate cost-efficient suspension feedstocks from single oxide raw materials to obtain Zn 2 TiO 4 coatings.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 592-598, May 26–29, 2019,
Abstract
View Papertitled, Transient Thermal Evolution During Deposition of Cold-Sprayed Coatings
View
PDF
for content titled, Transient Thermal Evolution During Deposition of Cold-Sprayed Coatings
Knowledge of thermal interactions between the substrate and deposited particles during cold spraying can shed light on coating formation and bonding mechanisms. In this study, a mathematical model based on the differential quadrature method was used to solve the hyperbolic heat conduction problem to predict the transient thermal evolution associated with the impact of a single particle. In addition, a 2D finite element model was developed to simulate the thermal and dynamic behavior of particle impact. The two models showed good agreement in predicting the maximum temperature at the particle-substrate interface. It was concluded that the proposed mathematical model could be used to predict the transient temperature of metallic and nonmetallic particle-substrate interfaces during cold spray deposition.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 523-530, May 8–11, 2000,
Abstract
View Papertitled, Amorphous Phase Formation of Zr-Based Alloy Coating by HVOF Spraying
View
PDF
for content titled, Amorphous Phase Formation of Zr-Based Alloy Coating by HVOF Spraying
This investigation was conducted to clarify the effects of process parameters on the formation of the new amorphous coating using Zr-based alloy, which is known as bulk metallic glass forming alloy, by a HVOF (High Velocity Oxygen Fuel) spraying process. Powders used for spraying was prepared by vacuum gas atomization and then crushed by a centrifugal mill. HVOF spraying experiments were carried out using a Tafa JP-5000 spraying gun. DTA (Differential Thermal Analysis) measurements have shown that the amorphous content of the coatings was measured up to about 65% depending on the spraying parameters. The amorphous fraction of the coatings is decreased with increasing the spray distance and the fuel flow rate. Microstructural observations and X-ray diffraction analysis of the spray coated layers reveal that the amorphization behavior during the spraying is attributed to the degree of the solidification of droplets and the oxide (ZrO2) formation in spray coated layers. Therefore, flame temperature and spray distance that can control the carrier gas temperature and undercooling effects of the droplets are the most crucial factors for the evolution of the amorphous phase using this bulk metallic glass forming alloy.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 699-703, May 25–29, 1998,
Abstract
View Papertitled, Comprehensive Methods for Studying Microinhomogeneity in Thermal Spray Coatings with Amorphous-Crystalline Structure
View
PDF
for content titled, Comprehensive Methods for Studying Microinhomogeneity in Thermal Spray Coatings with Amorphous-Crystalline Structure
An integrated approach was developed for investigation of thermal spray coatings with the amorphous-crystalline structure. The new approach combines methods of metallography, differential thermal and X-ray phase analysis, scanning electron microscopy and X-ray microanalysis. This makes it possible to reveal structural, phase and chemical heterogeneity, determine the degree of amorphization of coatings, temperature and heat of crystallization of the amorphous phase during heating. The new integrated approach was used to study amorphous-crystalline coatings of the Ni-P, Fe-Ni-B and Fe-B systems produced by thermal spraying.