Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
Fourier transform infrared spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 841-845, May 11–14, 2015,
Abstract
View Paper
PDF
A new method to fabricate micro-nano scaled surface with super-hydrophobicity is introduced in the present paper. Micro-nano hierarchical structure coatings based on silica (SiO 2 ) micron particles were successfully deposited on the stainless steel substrates by high-velocity oxygen fuel (HVOF) spraying which were modified by 1,1,2,2- Tetrahydroperfluorodecyltrimethoxysilane (FAS) to reduce surface energy. The influences of the HVOF process parameters on the wettability of the coatings were investigated. The coatings were characterized by scanning electron microscopy (SEM), 3D laser microscopy (LSM), and Fourier transform infrared spectrometer (FTIR). The results show that the as-sprayed surfaces exhibit micro-nano hierarchical structure. The water droplets are strongly adhesive to the as-sprayed surface, while by FAS absorbing treatment, the surfaces exhibit super-hydrophobicity, whose contact angle with water droplets are as high as 150°, and the water droplets tend to roll on the surface with extremely low adhesion with a sliding angle of 3°
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 219-224, May 21–24, 2012,
Abstract
View Paper
PDF
Bioactive coatings are proven to enhance bone regeneration, implant integration and act as drug-delivery systems following bone replacement surgeries. Polycaprolactone (PCL) was used in this study as coating material due to its superior biocompatibility and biodegradability. Polymethyl-methacrylate (PMMA) was used as an additive in order to improve the flowability of the PCL powder. The processing technique used to obtain polymeric coatings was oxy-acetylene flame spraying. Seeing that biodegradable polymers were not thoroughly investigated in the past, a Design of Experiments (DoE) analysis was necessary in order to understand the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability) and to be able to optimize the coating properties for specific requirements. The polymer matrix was sprayed onto titanium substrates. The statistical analysis was followed by FTIR spectroscopy, which showed that the coatings underwent little chemical degradation. Finally, biocompatibility tests showed that cells proliferated well on the flame sprayed polymer coatings, which confirms that the coating technique used did not affect the biological performance of the material.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 769-775, September 27–29, 2011,
Abstract
View Paper
PDF
This research aims at introducing new biodegradable/non-biodegradable materials (biopolymers) to the existing Hydroxyapatite (HA)-titanium combination or as a single coating in order to overcome some of the limitations of HA coatings. Biopolymers can act as drug carriers for a localised drug release following implantation; they can also have a structural role by improving the mechanical performance of implants at the bone –implant interface. The proposed materials consisted of biodegradable and non-biodegradable polymers widely used as drug delivery systems: polymethylmethacrylate and polyhydroxybutyrate 98%/ polyhydroxyvalerate 2%. The method used to apply the polymeric powders was oxygen/acetylene flame spraying, due to its superior mechanical advantages over other techniques. Screening tests were used to determine the suitable range of spraying parameters, followed by optimisation to understand of the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), in order to obtain an optimal coating design. The polymers were sprayed onto bare titanium substrates. FTIR results showed that the coatings underwent little chemical degradation. Biocompatibility tests showed that cells proliferated well on flame sprayed polymer coatings, which confirms that the coating technique used did not affect the biological performance of the material.
Proceedings Papers
Valence Band XPS and FT-IR Evaluation of Thermal Degradation of HVAF Thermally Sprayed PEEK Coatings
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1069-1071, June 2–4, 2008,
Abstract
View Paper
PDF
Coatings of poly(ether-ether-ketone) (PEEK) have been produced using the high-velocity air fuel (HVAF) thermal spray technique. These coatings have been produced at 50 and 100 mm nozzle lengths and 200, 300, and 400 mm gun-to-substrate distances on stainless steel 304 substrates. The techniques used to characterize and determine the extent of thermal degradation of the PEEK coatings were valence-band XPS and FTIR-ATR. Valence-band XPS showed that, in general, minimal degradation of the PEEK occurred during the HVAF thermal spraying process. FTIR-ATR results showed that more surface degradation of the PEEK coating occurred at the 200 mm gun-to-substrate distance for both nozzle lengths than at the larger gun-to-substrate distances. Specifically, absorption bands appeared at 2918 and 2850 cm -1 , which correspond to alkane –CH 2 – asymmetric stretching modes. The resolution of the 672 cm -1 peak, which corresponds to C–H vibrations on the phenyl ring, increased from one to two peaks in the spectra of the 200 and 300 mm gun-to-substrate runs. This indicates a structural change in the phenyl ring, possibly indicating a change in the extent of crystallization of the PEEK polymer.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 726-731, May 2–4, 2005,
Abstract
View Paper
PDF
Excellent biocompatibility of hydroxyapatite (HA) is the main reason of application plasma-sprayed coatings onto orthopedic prostheses. A careful optimization of spray parameters is necessary to avoid thermal decomposition of HA onto less biocompatible products such as e.g. tricalcium phosphate, tetracalcium phosphate, calcium oxide and amorphous calcium phosphates. The spray parameters influence considerably the decomposition and the present study is devoted to understand this influence using on an experimental way. The design of experiments (DOE) was made using two-level 2N plan of experiments (N=5). In total, 32 experiments of spraying were carried out by varying following operational parameters: (i) composition of plasma working gases; (ii) electric power input; (iii) art of spraying (into water or onto substrate); (iv) carrier gas flow rate and; (v) art of injection (external and internal). Plasma-sprayed coatings and powders were analyzed by Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The X-ray diagrams enabled to find the content of crystal phases. The content was a first response function described by a polynomial regression equation. The morphology of obtained deposits was also characterized using Scanning Electron Microscope (SEM). Their porosity was estimated using image analysis of coatings cross section images.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 19-24, May 25–29, 1998,
Abstract
View Paper
PDF
Thermally sprayed coatings of high performance thermoplastics are of interest especially for the chemical industry for anti-corrosion applications at elevated temperatures. In this paper coatings of polyetherether-keton (PEEK) and polyphenylen-sulphide (PPS) have been produced by simple flamespraying. They have been investigated by optical metallography, FT-IR analysis and DSC-analysis. Among the coating properties also the "in-flight" particles have been studied by wipe-tests and FT-IR analysis in order to assess possible decomposition effects during spraying.