Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Galvanic corrosion testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1025-1031, May 8–11, 2000,
Abstract
View Paper
PDF
The work reported herein deals with the interaction among the thermally sprayed coatings and steel substrate in acid aqueous solutions investigated by using the electrochemical process. Thermally sprayed coatings on steel substrate for such as the tribological applications except for the sacrificial anode property have been extended. The environment of these machinery components is often utilized accompanied with the aqueous solutions. The galvanic corrosion occurred in aqueous solutions among the metals or alloys have been well known. In the actual spray process, the formation of penetrated pores or crevice defects are not generally avoided. In the aqueous solution environment, the penetrated defects cause the galvanic corrosion between coating and steel substrate, and tend to be occurred the coating spalling. In this work, the electrochemical process was employed to determine the corrosion phenomena. The preferable combination of sprayed coatings and steel substrate are discussed and the examples of design of the intermediate layers are proposed.