Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11
Test method evaluation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 101-108, May 26–29, 2019,
Abstract
PDF
Metallic implants for orthopedic or dental use are often coated with a plasma-sprayed hydroxyapatite (HA) layer. In this study, HA coatings are applied to titanium substrates of varying thickness and laser shock adhesion tests are performed using different laser spot diameters. The objective is to investigate the effect of different shockwave regimes on interfacial debonding and the potential consequences of laser shock adhesion testing. HA coatings exhibiting different levels of adhesion were subjected to laser shock experiments and subsequently examined using nondestructive inspection techniques. The results are presented along with suggestions for developing a robust laser shock adhesion test.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 734-744, May 26–29, 2019,
Abstract
PDF
When testing the thermal cycling resistance of thermal barrier coatings, the surface temperature of the materials must be controlled so that test results can be used for coating life prediction. In this study, the temperature at the surface of plasma-sprayed TBCs was controlled during thermal shock testing using feedback from a double-color IR thermometer and high-rate cooling. The results are presented and discussed, highlighting the capability of the recently designed thermal shock test.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 893-900, May 26–29, 2019,
Abstract
PDF
Despite the wide application of powder metallurgy in the field of additive manufacturing, a general understanding of the spreadability of powder particles in electron beam powder bed fusion (EB-PBF) is lacking. This paper presents the results of a literature review on particle flowability and spreading in additive processes. Different flowability tests are described and spreading mechanisms for different powder-bed processes are reviewed. A technique is proposed to study spreadability in which a single layer of powder is ‘frozen’ in the as-spread condition by contact sintering and then characterized using white-light interferometry. A standard method to calculate powder-bed density is defined based on this approach, and correlations between density, packing factor, and flowability are established.
Proceedings Papers
Testing Method of Spalling Resistance for Thermal Barrier Coating by Thermal Cycle and Thermal Shock
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 997-1001, May 4–7, 2009,
Abstract
PDF
“Testing Method for Thermal Cycle and Thermal Shock Resistance of Thermal Barrier Coating (TBC)” is a Japanese Industrial Standard (JIS) newly established by the Minister of Economy, Trade, and Industry in 2008, after deliberations by Japanese Industrial Standards Committee, in accordance with the Industrial Standardization Law. The standard specifies a testing method that evaluates the spalling resistance of TBCs based on operating conditions in gas turbines. This paper provides an overview of the standard along with examples of its use.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1012-1017, May 4–7, 2009,
Abstract
PDF
In the present work, pure Al and Al-Al 2 O 3 composite coatings are deposited by cold spraying while measuring in-flight particle velocities. Residual stresses, evaluated using the Almen curvature method, X-day diffraction, and modified layer removal, are correlated with particle velocity, coating thickness, and alumina content. Peening stresses due to plastic deformation were estimated to be less than 100 MPa and are shown to be nearly constant through the thickness of the coatings.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 855-860, May 4–7, 2009,
Abstract
PDF
In this investigation, particle image velocimetry (PIV) diagnostics were employed to analyze the spray produced by a two-fluid atomizer as used in suspension plasma spraying (SPS). This led to a change in the design of the atomizing nozzle in order to achieve a high-speed spray with narrow distributions in droplet size. The resultant spray was characterized and the diagnostic was adapted accordingly. Various suspensions of YSZ powders were then injected into the plasma under different conditions and particle velocities were determined and correlated with the coating morphologies obtained.
Proceedings Papers
In Situ Monitoring of Particle Consolidation during Low Pressure Cold Spray by Ultrasonic Techniques
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 902-907, May 4–7, 2009,
Abstract
PDF
This work assesses the potential of using an ultrasonic probe attached to the back of the substrate to monitor the cold spraying process. While this is only a preliminary study, focusing more on presenting the results than analyzing them, a few conclusions may be drawn. With acoustic sensing, not only can the final value of thickness be estimated, it is also possible to see the dynamics of how the buildup takes place in real time. As shown in the data plots, the buildup process for aluminum-alumina composites is fairly universal across the spray with slower buildup at the outer edges of the coating. More importantly, it is shown that nozzle speed, spray diameter, and thickness estimates fit well with measured values.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 402-407, March 4–6, 2002,
Abstract
PDF
This paper evaluates an electrochemical mapping method for determining the corrosion resistance and structural integrity of thermally sprayed coatings. In the test setup, a potentiostat is suspended over the test sample, forming an electrochemical cell. The circuit is completed through an electrolyte-containing porous tip. Capillary forces keep the electrolyte on the surface of the tip, preventing transfer to the substrate surface. In the investigation, electrochemical, spatially resolved measurements are carried out on flame and vacuum plasma sprayed nickel-base coatings and compared with the results of salt spray testing. It is observed that the new method offers many advantages being faster, nondestructive, and quantitative in nature. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 450-452, March 4–6, 2002,
Abstract
PDF
Arc spraying is an economical method for applying metallic layers due to its high spray rates and uniform melting of spray particles. The main disadvantage is the difficulty in achieving sufficient particle velocity to ensure good layer adhesion. This study investigates the influence of nozzle geometry, arc power, and gas pressure on the size and velocity of particles in an arc spray jet. The experiments were conducted using particle image velocimetry (PIV) to measure the spatial and velocity distribution of particles in flight. For X45Cr13 steel, particle velocities were found to be between 85 and 95 m/s at a gas volume flow of around 1 m 3 /min. Velocities of up to 150 m/s were ultimately achieved, but at the expense of higher atomizer gas consumption. Paper text in German.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 483-490, September 15–18, 1997,
Abstract
PDF
A simple test procedure, based on steady state flow through a membrane, has been developed for measurement of the gas permeability of specimens over a range of temperature. The reliability of this equipment has been verified by testing solid disks containing single perforations and comparing the measured flow rates with those expected on the basis of laminar flow. Coatings of yttria-stabilised zirconia have been produced by plasma spraying in vacuum and in air. The specific permeability of these coatings has been measured at temperatures ranging up to 600°C, using hydrogen gas. It has been found that permeability is increased for coatings produced with longer stand-off distances and at higher pressures. Porosity levels have been measured using densitometry and microstructural features have been examined using SEM. A model has been developed for prediction of the permeability from such microstructural features, based on percolation theory. Agreement between predicted and measured permeabilities is good, although it is clear that more comprehensive data are needed in order to validate the model systematically.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 263-273, October 7–11, 1996,
Abstract
PDF
The thermal spray industry identified the need for repeatable and reproducible feedstock powder characterization methods, especially particle size distribution (PSD), for cost effective manufacturing of thermal barrier coatings. The PSD measurement by a laser light scattering method was identified as the technique most widely used in the industry. This technique offers high resolution, rapid measurements and ease of use. A round robin study by nine laboratories using different models of a commercial light scattering instrument has been completed as the first step towards the development of a Standard Reference Material (SRM) for the calibration of light scattering instrument. Other measurement techniques were also employed for additional comparison. The PSD measurements employing light scattering techniques evidenced some method dependence, despite the use of identical sample preparation procedures. The round robin results will serve as reference values for the development of the SRM.