Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Precision
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 469-482, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cold spray additive manufacturing (CSAM) is an emerging process that has garnered significant attention from researchers due to its unique advantages. These include higher deposition rates, no need for a protective atmosphere, and the ability to connect or combine dissimilar materials. While CSAM allows for near-net-shape fabrication of workpieces, the accuracy and properties of the final products often fall short of user requirements. Furthermore, there is an urgent need to develop a generalized manufacturing strategy for workpieces with complex geometries. It appears that integrating various processes throughout the entire manufacturing workflow, from design to delivery, could address these challenges. However, few researchers have explored this area. To fill this gap, this study presents an integrated modular CSAM system designed for efficient and flexible workpiece fabrication. The system comprises two main components: software for modeling and simulation, and hardware for precise fabrication, each containing multiple modules. These modules do not operate independently but are coupled through direct or indirect decentralized and event-driven physical links. The system described in this paper offers a generalized strategy for precision manufacturing of workpieces using CSAM, potentially advancing the field and addressing current limitations in accuracy and versatility.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 768-772, April 29–May 1, 2024,
Abstract
View Paper
PDF
The Fraunhofer Institute for Material and Beam Technology IWS in Dresden has developed “Lightblast,” a laser ablation technology for creating clean, structured surfaces. Lasers offer precision, reproducibility, cost-effectiveness, and environmental friendliness, opening new possibilities in surface treatment. Traditional blasting processes employ compressed air to propel abrasive particles at high speed onto a substrate. This method often results in embedded abrasive particles, surface contamination, and rapid abrasive wear, compromising process consistency. Additionally, the abrasive waste poses environmental and disposal challenges. Lightblast utilizes a continuous wave single-mode laser and a dynamic galvanometer scanner to precisely vaporize the substrate without abrasives. Adjustable parameters control the resulting surface roughness with high reproducibility. Unlike pulsed laser ablation, the continuous wave laser enables higher productivity due to increased power. Furthermore, Lightblast allows for selective surface structuring based on CAD designs without additional masking. Target applications include surface preparation for coating, bonding, and joining processes.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 789-794, May 26–29, 2019,
Abstract
View Paper
PDF
This study employs a three-dimensional simulation to investigate the cold gas dynamic manufacturing process. During the buildup of the desired object, sharp edges, stagnation points, and corners are likely to form that can influence the trajectories of the particles. This leads to dispersion and lack of particle deposition in these areas, which can eventually reduce the precision and efficiency of the build process. A cylindrical and frustum-shaped object are numerically simulated on a substrate to represent typical additively manufactured parts. Particle trajectories and impact conditions with and without these objects are compared. The results provide useful information for understanding the limitations and challenges associated with cold gas dynamic manufacturing, which can help improve the quality and precision of the process.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 1007-1010, March 4–6, 2002,
Abstract
View Paper
PDF
Studies on atmospheric plasma spraying have generally focused on the influence primary parameters such as gas flows and plasma current. However, the APS process is also influenced by a large number of disturbance variables including electrode wear, cooling system irregularities, and disruptions in powder injection. This study investigates both the cause and effect of each of these factors in the context of aluminum oxide spraying. Numerous measurements are made showing how electrode wear, cooling fluctuations, flow measurement inaccuracy, and variations in powder feed rates affect in-flight particle characteristics, deposition efficiency, and layer thickness. Paper includes a German-language abstract.