Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Shafts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 130-137, April 29–May 1, 2024,
Abstract
View Papertitled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
View
PDF
for content titled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
Restoring the damaged shaft parts to extend their service life is an economical and environmentally friendly solution. In recent years, the laser metal deposition (LMD) process has received increasing attention in component restoration. However, the residual stress and deformation inevitably occur due to the heat input, leading to the deflection of the repaired shafts. Therefore, this study aims to minimize the deflection of LMD-repaired shaft parts through parameter optimization. The width and height of the LMD deposit as a function of the laser power and traverse speed were achieved by fitting a series of one-pass experimental results. Based on it, the finite element analysis was conducted to clarify the effect of the repairing conditions (e.g., laser power, traverse speed, and initial substrate temperature) on the deflection and residual stress distribution of the shaft parts after LMD repairing. A 304 stainless steel round bar with a diameter of 6 mm was served as the component to be repaired. The deposit was 316L stainless steel, whose deposition process was realized by the element birth and death technique. The results indicated that the free-end of the specimen experienced complicated deformation during the LMD and cooling process. After cooling off, the substrate presents a residual compressive stress along the axial direction. Moreover, the substrate deflection can be reduced by improving the initial substrate temperature. This study provided an important reference for optimizing the process parameters in repairing the shaft parts.