Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Reliability modeling and simulation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 158-164, May 26–29, 2019,
Abstract
View Papertitled, Artificial Intelligent Aided Analysis and Prediction of High-Velocity Oxyfuel (HVOF) Sprayed Cr 3 C 2 -25NiCr Coatings
View
PDF
for content titled, Artificial Intelligent Aided Analysis and Prediction of High-Velocity Oxyfuel (HVOF) Sprayed Cr 3 C 2 -25NiCr Coatings
In this work, an artificial neural network (ANN) model was developed to investigate the application of Cr 3 C 2 -25NiCr coatings by HVOF spraying and predict the resulting properties based on flow rates, stand-off distance, and other parameters. HVOF coatings were sprayed and tests were conducted to generate data for training, validating, and testing the model. The model was trained with an R-value of 0.99965 to predict the relationship between spray parameters and coating properties including hardness, porosity, and wear rate. The reliability and accuracy of the model was subsequently verified using independent test sets.