Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Phase instability
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 253-260, May 10–12, 2016,
Abstract
View Paper
PDF
This study assesses the thermal stability of YSZ coatings produced from nanostructured feedstock by means of atmospheric and suspension plasma spraying. Free-standing YSZ coatings were isothermally treated for 24 h at different temperatures (1200-1600 °C) and at 1550 °C for 20 to 100 h. Afterwards, the coatings were examined to determine the effect of heating on phase composition, microstructure, morphology, and hardness. No evidence of tetragonal-monoclinic phase transformation was detected in the coatings that had been treated for 24 h, even at 1600 °C, but in coatings treated for different periods of time at 1550 °C, a phase transformation occurred after 40 h. Overall, the suspension plasma sprayed coating showed the greatest degree of change due to thermal aging.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 911-915, May 10–12, 2016,
Abstract
View Paper
PDF
High-purity nanocrystallized YSZ powders were used to manufacture thermal barrier coatings by air plasma spraying. After spraying, the coating samples were aged at temperatures of 1200, 1300, and 1400 °C. Coating samples made from ordinary YSZ powders were aged at the same temperatures. XRD analysis shows significant tetragonal-to-monoclinic phase transformation in the reference coatings after 100 h at 1400 °C in contrast to the phase stability exhibited by high-purity YSZ. The sintering behavior of the YSZ coatings was also examined along with the influence of MCrAlY oxidation.