Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Gibbs free energy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 30-37, May 22–25, 2023,
Abstract
View Paper
PDF
The Cold spray (CS) is a promising solid-state additive manufacturing method. The interesting physics involved in the CS process including cold, high strain rate, adiabatic and severe plastic deformation results in a unique and complex structure of CS deposits at different length scales that directly determines the properties of the deposits. Therefore process- structure properties (performance) (PSP) linkages explorations are pivotal. Integrated computational materials engineering (ICME) methods in complement with experimental analyses are required to evaluate materials properties and behaviour in PSP links exploration. Finite element modelling is used to simulate the thermomechanical response of materials and evolution of field variables in CS, i.e stress, strain, strain rate, and temperature, at structural scales. Molecular dynamics modellings of nano-particle impact have provided useful insights into atomic-scale phenomena of individual particle impact while the modelling of microstructure evolution in micro and mesoscale has yet to be investigated. In this study, we developed and implemented a thermodynamic phase field simulation method to capture the structure evolution of CS composite Ni-Ti deposit upon post-spray heat treatment (PSHT) in microstructure scale. The external or internal stimuli such as heat and strain either generated in the system because of phase transformation or stored as internal energy upon CS process are accounted for. The interface mobility and microstructure development are calculated by minimization of Gibbs free energy of the system. The comparison of the simulated microstructure with experimental results confirms that the phase field modelling precisely predicts the microstructure evolution of the CS deposits upon PSHT.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 8-15, May 13–15, 2013,
Abstract
View Paper
PDF
This study investigates the HVOF spraying characteristics of a new WC-FeCrAl powder as compared to a standard WC-Co feedstock. Significantly higher particle temperatures were recorded for the WC-FeCrAl powder during spraying, presumably an effect of phase reactions during particle dwell time in the jet. XRD graphs revealed W 2 C and δ-Fe 2 O 3 formations. Gibbs free energy calculations propose that energy is being released during the formation of these phases. Comparable correlations between in-flight particle measurements and splat morphologies were found for both powders. Coating hardness was also found to be comparable, although porosity was significantly lower in the WC-FeCrAl samples. This is attributed to the smaller carbide grain size of the new powder, which might help explain the lower viscosity of the molten particles at impact. A response surface analysis of XRD measurements indicates that W 2 C formation occurs in the spray jet, and it is assumed that δ-Fe 2 O 3 formation occurs on the surface of the substrate after particle deposition.