Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 46
Density
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 44-55, May 4–6, 2022,
Abstract
View Paper
PDF
The feasibility of processing various polymers by cold spray has been exemplified by depositions with low porosity and properties comparable to the bulk material. However, cold sprayed polymers are generally deposited with low deposition efficiency compared to more extensively studied metal sprays. Low efficiencies in polymer sprays are attributed to characteristic differences in material properties between metals and polymers. Notably, the thermophysical properties of polymers limit heat transfer and promote intra-particle thermal gradients that develop during cold spray processing. These properties (e.g., thermal conductivity, heat capacity, density) and low deposition efficiencies demand alterations to the cold spray process equipment outside typical metal powder spray conditions. Herein, a modified powder feed tube is used to pre-heat powder to temperatures (~84 °C) below the powder melting point, or cool it (~-55 °C) below room temperature before contacting the high velocity carrier gas in the nozzle of a CSM 108 cold spray system. Numerical simulation demonstrated that pre-heating/cooling the powder feedstock is a viable means of adjusting particle temperature upon impact with the substrate; however, this technique has generally not been deliberately utilized in the cold spray of polymers. In the present work, no significant increase in deposition efficiency (~65% for all sprays) was found by increasing the pre-heat temperature. However, pre-heated particles had a mechanical strength 28% higher than particles injected at room temperature and -55 °C. Despite this, scanning electron microscope images indicated no notable differences between the deposit microstructures. Future works are planned to study the effect of pre-heat at higher particle impact velocities and degrees of pre-heat to improve powder consolidation.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 139-146, May 24–28, 2021,
Abstract
View Paper
PDF
Cold gas spraying is a solid-state deposition process developed for metallic powders as feedstock materials. For ceramic materials; such low temperature-high velocity kinetic process is still questionable but could have interesting advantages. In the CERASOL project (ANR-19-CE08-0009); the nature and the architecture of porous ceramic powders involving agglomerated sub-micrometric grains are investigated. To that purpose; three oxide ceramics powders (alumina; zirconia and yttria) have been prepared for cold spray. These powders were analyzed in order to assess their architecture (composition; particle size; porosity; density; crystallite sizes…). Preliminary cold spray experiments were carried out implementing velocities measurements for various stand-off distances and spraying of coupons with line experiments. The characteristics of the deposited layers have been examined by SEM and XRD in order to discuss the role of the powder architecture on the impact behavior of the nanostructured agglomerated particles. The role of the gas stream that affects the kinetic and the trajectory of the particles are also discussed.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 157-166, May 24–28, 2021,
Abstract
View Paper
PDF
In previous studies at McGill University, tin was successfully cold sprayed onto carbon fiber reinforced polymers (CFRPs). A “crack-filling” mechanism was described as the deposition mechanism that allowed deposition of tin onto the CFRP. Improving the coating conductivity for lightning strike protection (LSP) purposes was achieved by adding other metal powders (aluminum, copper, zinc) to tin and cold spraying on the CFRP. At the same time, it was noticed that the addition of this secondary component (SC) provided an increase in deposition efficiency (DE), tamping was initially hypothesized to explain this improvement, thus prompting a study solely on the effect of SC hardness, which is reported elsewhere in this conference. However, it is recognised that other powder characteristics may also be influencing the DE. Thus, in this study, SCs with a wider variety of particle sizes, morphologies, densities and hardness values were mixed with tin and sprayed on CFRPs. The effect of SC properties on tin deposition is discussed and an optimal combination of SC properties for cold spraying of tin is suggested.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 136-142, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the effect of preheating on the dynamic flowability of HVOF powders, including conventional WC-Co, nano WC-Co, WC-FeCrAl, and Cr 3 C 2 -NiCr. The results show that the flowability of WC-Co powders can be significantly improved with a two-hour preheat at 200 °C. One explanation for the improvement is that moisture absorbed by the powder is released during pretreatment, but further study is required as it was found that dynamic density influences flow behavior as well.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 185-191, May 26–29, 2019,
Abstract
View Paper
PDF
This study assesses the microstructure and properties of SiC-based coatings deposited using liquid and gas-fueled HVOF spraying techniques and a recently developed SiC-YAG ceramic powder. The coatings are shown to be superior to plasma and high-frequency pulse deposition sprayed SiC in terms of density and microstructure and comparable in terms of adhesion values. SEM and EDX analysis of the coatings shows that hard SiC particles are retained in a YAG binder, forming a composite that exhibits good sliding wear and erosion behaviors. Due to its low density (< 4 g/cm 3 ), the SiC composite may be an alternative to coating materials such as WC-CoCr and Cr 3 C 2 -NiCr in weight-sensitive applications.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 682-687, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, NiCrBSi powders with a size range of 30-50 μm were deposited on mild steel substrates by self-fusing atmospheric plasma spraying. Particle temperatures exceeded 2400 °C and the deposits were remarkably dense with low oxygen content. Based on the results, a novel strategy is proposed to directly deposit dense, oxide-free coatings by plasma spraying without the need of post-spray fusing processes.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 872-879, May 26–29, 2019,
Abstract
View Paper
PDF
This study assesses the influence of atmospheric plasma spraying parameters on splat stacking and porosity formation in bioglass coatings prepared from commercial powders. Coating samples were deposited on stainless steel substrates using spraying parameters established through numerical simulations. Different Ar-H 2 mixtures were used as the forming gas, and plasma current and spraying distance were varied. Coating microstructure and phase composition were determined by SEM and XRD analysis. Although numerical simulations for each parameter set predicted a suitable Sommerfeld number for proper splat stacking, Na 2 O and P 2 O 5 volatilization occurred during spraying, promoting the formation of porosity in the coatings. Denser coatings were obtained, however, by adjusting the gas mixture ratio, plasma current, and spraying distance such that enthalpy of the plasma jet is sufficient to overcome the glass transition temperature of the powder and at the same time avoid the evaporation of volatile oxides.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 893-900, May 26–29, 2019,
Abstract
View Paper
PDF
Despite the wide application of powder metallurgy in the field of additive manufacturing, a general understanding of the spreadability of powder particles in electron beam powder bed fusion (EB-PBF) is lacking. This paper presents the results of a literature review on particle flowability and spreading in additive processes. Different flowability tests are described and spreading mechanisms for different powder-bed processes are reviewed. A technique is proposed to study spreadability in which a single layer of powder is ‘frozen’ in the as-spread condition by contact sintering and then characterized using white-light interferometry. A standard method to calculate powder-bed density is defined based on this approach, and correlations between density, packing factor, and flowability are established.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 97-102, May 10–12, 2016,
Abstract
View Paper
PDF
This study investigates the influence of particle size, nozzle diameter, gas flow rate, and stand-off distance on the microstructure and density of suspension plasma sprayed yttrium-oxide coatings and the intermediate effect of particle characteristics. Three ethanol suspensions were prepared, one with coarse Y 2 O 3 , one with fine Y 2 O 3 , and one with submicron YSZ. The suspensions were injected vertically into the plasma jet downstream of the nozzle and a thermal spray sensor was used to measure in-flight velocity and temperature. The coatings were found to have columnar and dense vertically cracked (DVC) microstructure, varying in hardness and density. Text results and examination findings are presented and correlated with spray parameters, particle properties, and possible coating formation mechanisms.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 406-411, May 10–12, 2016,
Abstract
View Paper
PDF
Lanthanum gallate doped with strontium and magnesium (LSGM) is a good electrolyte candidate for Intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, low-temperature sintering is used to increase the density of LSGM coatings prepared by vacuum cold spraying (VCS). LSGM layers with different thickness were deposited by VCS on NiO-YSZ substrates. In order to suppress chemical reactions between Ni and LSGM, the substrates were coated with gadolinium-doped ceria by tape casting. After sintering at 1200 °C, the coatings were found to be denser in most regions due to grain growth, which appears to be accompanied by cracking, particularly in thicker layers. A second layer was deposited on the annealed coatings to seal the cracks and the two-layer structure was further sintered. Gas permeability test results show that the multilayer films are dense enough to consider their use as electrolyte membranes in IT-SOFCs.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 462-465, May 10–12, 2016,
Abstract
View Paper
PDF
This paper introduces a new way to inject nanoparticles into a plasma flame and demonstrates its use in the deposition of dense ceramic coatings. Instead of suspensions or pastes, nanoparticles are dispersed in micro resin fragments. In this case, zirconia particles with an average diameter of 200 nm were mixed with a thermosetting acrylic liquid resin and the mixture was solidified, crushed, and screened. Micro resin fragments are fed into the plasma flame using a conventional powder feeder. The resin content mostly burns away in the plasma jet, which heats and propels the nanoparticles into the substrate. SEM analysis of the zirconia deposits shows that they are free of microcracks and pores, although carbon contamination was detected by thermogravimetry. Coating hardness tests were also conducted and the results are presented.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 874-879, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, laser glazing is used to densify plasma-sprayed YSZ coatings on carbon steel substrates. Melt pool characteristics are assessed for different laser settings and treatment conditions, including substrate preheating. SEM examination of coating surfaces and cross-sections before and after laser treatment shows how microstructure responds to process parameters. It also shows how preheating widens the melt pool, deepens the laser-glazed layer, and reduces the surface density of cracks, thus improving coating quality.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1046-1051, May 10–12, 2016,
Abstract
View Paper
PDF
This study demonstrates a novel method for improving the corrosion resistance of cold sprayed Al6061 coatings. Large stainless steel particles were added to a commercial Al6061 powder and the mixture was deposited on Mg alloy AZ31B substrates using nitrogen gas at low working pressure and temperature. It is shown that the stainless steel particles had a shot-peening effect, thus increasing the density as well as the corrosion resistance of Al6061 coatings. SEM examination showed that no stainless steel particles were incorporated in the coating.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1132-1137, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, zirconia coatings were fabricated by vacuum plasma spraying using hollow spherical and fused and crushed YSZ powders. Relationships between spray parameters and in-flight particle velocities and temperatures were investigated in real time and correlated with coating microstructure and density obtained under vacuum as well as atmospheric spraying conditions. The results indicate that plasma sprayed particles reach higher velocities under vacuum and slightly higher temperatures in atmospheric conditions. Powder morphology and structure play a major role in determining coating microstructure and porosity, especially in vacuum spraying. The fused and crushed powder yielded the densest coatings under the vacuum process conditions employed.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 725-728, May 4–7, 2009,
Abstract
View Paper
PDF
This paper describes the basic design and operation of a low-pressure plasma spraying (LPPS) system in use at Sandia National Laboratories. To demonstrate the versatility of the system, Sandia engineers, working in collaboration with the New Mexico Institute of Mining and Technology, produced thin (< 100 μm), dense yttria-stabilized zirconia coatings using three deposition mechanisms: liquid droplet, vapor, and mixed mode (vapor and droplet). Despite slight differences in equipment configuration, the work duplicates many of the results obtained in previous investigations, confirming the advantages of LPPS over other thin film deposition techniques.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1163-1168, May 4–7, 2009,
Abstract
View Paper
PDF
In this study, WC-CoCr coatings were deposited on an aluminum substrate by HVOF spraying. Layer thicknesses between 50 and 150 μm were achieved by stepwise increase of the number of torch scans. The stepwise method is shown to make the coatings not only thicker, but also denser due to peening effects and changes in the splat formation mechanism. It also explains the incremental improvement in coating hardness and corrosion and wear resistance observed over the first few torch scans, the largest of which occurs between the second and third scans. The coatings are also compared to anodized films and were found to have superior wear and impact resistance but less resistance to corrosion.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1429-1432, June 2–4, 2008,
Abstract
View Paper
PDF
Lanthanum silicate coatings were deposited onto stainless steel substrates by atmospheric plasma spraying (APS) using mechanically mixed (type A) and calcined feedstock (type B) powders. The phase composition, microstructure, density and porosity of coatings prepared from the two types of powder were compared.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 391-397, June 2–4, 2008,
Abstract
View Paper
PDF
High temperature protection requires full coating density, high adhesion, minor oxide inclusions, and preferably fine grains, which is not achievable in most thermal spray processes. High velocity oxygen-fuel (HVOF) thermal spray process has been applied extensively for making such coatings with the highest density and adhesion strength, but the existence of not or partially melted particles are usually observed in HVOF-formed coatings because of relative low flame temperature and short particle resident time in the process. This work has investigated the development of an innovative HVOF process using a liquid-state suspension/slurry containing small alloy powders. The advantages of using small particles in a HVOF process include uniform coating, less defective microstructure, higher cohesion and adhesion, full density, lower internal stress and higher deposition efficiency. Process investigations have proven the benefits for making alloy coatings with full density and high bond strength attributing to increased melting of the small particles and the very high kinetic energy of particles striking on the substrate. High temperature oxidation and hot corrosion tests at 800°C have demonstrated that the alloy coatings made by the novel process have superior properties to conventional counterpart coatings in terms of oxidation rates and corrosion penetration depths.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 473-476, June 2–4, 2008,
Abstract
View Paper
PDF
The main argument against the use of the internal HVOF process is the high thermal stress to which the substrates are subjected during the coating process. Traditional HVOF guns operate with a flame-stream energy level of 100–200 kW. Rendering HVOF technology usable for the application of internal coatings requires the reduction of the energy level of the flame stream to 20 kW, while safeguarding high particle velocity and sufficient temperature despite the reduced energy level. This requires an integrated process consisting of the HVOF gun, powder feeder, fuel control, and fine powder; the particle sizes of the powder are -25+5 µm, -15+5 µm, and -10+3 µm. Thermico’s ID CoolFlow M HVOF internal spraying gun comes equipped with a 5 mm acceleration nozzle and radial powder feed. It is suitable for internal diameters of 80 mm and above and eliminates the typical overheating problem. The ID CoolFlow M HVOF gun is suitable for internal coatings with Thermico 776 WC-CoCr powder, which comes in grain sizes of -15+5 µm and -30+15 µm. A comparison of both processes requires a number of specimen coatings with different parameters, which have to be compared to reference coatings. These reference coatings are produced using a Thermico CJS K4.2-776/G gun in combination with WC-CoCr 86 10 4 powder with a grain size of -30+15 µm, and a CJS K5.2-776 gun, using a finer powder with a grain size of -15+5 µm. The base material consists of heat-treated steel rings with a hardness of 45 HRC, an internal diameter of 130 mm and a wall thickness of 10 mm. Subsequently, the density, porosity, and structure of the specimen is assessed, and they are checked metallographically and with a scanning electron microscope, including EDX analysis. The specimen wear is monitored using the prototype of an internal coating test stand, developed by the Institute of Materials Science at the University of Applied Sciences Gelsenkirchen. It is essentially based on the same principle as the pin-on-disc tribometer for relative movements.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 703-708, May 15–18, 2006,
Abstract
View Paper
PDF
High velocity oxygen-fuel (HVOF) thermal spray processes are used in applications requiring the highest density and adhesion strength, which is not achievable in most other thermal spray processes. Like other thermal spray processes, however, a normal HVOF process is not able to apply fine powders less than 10 µm via a conventional powder feeder. The advantages of using smaller and even nano-sized particles in a HVOF process include uniform coating, less defective microstructure, higher cohesion and adhesion, full density, lower internal stress and higher deposition efficiency. A new process has been developed to realize HVOF forming of fine-grained alloy layers by using liquid precursors containing fine metallic particles. Process investigations have shown the benefits for making single and duplex layered coatings with full density and high bond strength attributing to the very high kinetic energy of particles striking on the substrate surface and the better melting of the small particles. One of the targeted applications is for the water walls of a fossil-fired boiler that operate in a high temperature and corrosive environment. The new coating system is based on material selection, structure design, process innovation and diagnostics, microstructure, and property evaluation. It is promising to provide better protection of the boilers against various types of degradations like corrosion, oxidation, erosion and interfacial failure.
1