Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 580
Wear resistance
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 70-76, May 22–25, 2023,
Abstract
View Paper
PDF
Plasma Transferred Wire Arc (PTWA) is a well-established thermal spray process that is used in high-volume production by multiple automotive OEMs. Benefits of these PTWA thermal spray coatings include closer bore spacing, improved thermal transfer, lower bore distortion, increased resistance to corrosion and abrasion, reductions in weight and friction, enhanced durability, and product cost savings. For automobiles, this leads to increased fuel economy and lower emissions. Millions of engine cylinder bores per year are coated using the PTWA thermal spray process. To ensure optimal surface coatings, it is vital to monitor the process variables. Although some process monitoring already exists in current production, new technological advancements allow for additional variables to be monitored. Arc voltage is of particular importance as it can be viewed real-time in situ to the PTWA process to determine the curvature of the feedstock wire. Straight wire is ideal for achieving peak system performance. If the wire has excessive curvature, it can lead to out-of-tolerance conditions that detrimentally affect the quality of the surface coating. Therefore, in-situ monitoring of wire curvature is both desirable and necessary for producing the highest quality PTWA thermal spray coatings possible.
Proceedings Papers
Comparative Study of Ni-, Co- and Fe-Based Laser Cladding Coatings for Wear and Corrosion Resistance
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 104-111, May 22–25, 2023,
Abstract
View Paper
PDF
Among hardfacing processes using welding, laser cladding is nowadays one of the most efficient surface coating techniques. It is widely used to increase wear and corrosion resistance of machine parts as a result of the unique process characteristics such as low heat input (smaller heat affected zone), distortion free clad layers, lower dilution rate, finer coating microstructure as well as good metallurgical bonding at the coating/substrate interface. A wide range of new hardfacing materials and corrosion-resistant alloys are available on the market and in this study, different coatings of Ni-, Co- and Fe-based alloys as well as carbide-based metal matrix composites have been deposited by laser cladding for benchmarking purposes. Coatings were deposited onto mild steel substrates using a high-power diode laser. Coating microstructure and hardness were investigated as well as their tribological properties such as 2-body and 3-body abrasion, slurry abrasion and cavitation erosion resistance. Corrosion performance of coatings was also investigated with the salt spray test. Coatings are ranked according to their performance in the different tests and relationships between microstructure and coating properties are discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 119-126, May 22–25, 2023,
Abstract
View Paper
PDF
The cavitation performance of wear resistant cermet coatings can deteriorate in a corrosive environment. This investigation therefore considered the cavitation resistance in seawater of thermally sprayed High Velocity Oxy Fuel (HVOF) WC-10Co-4Cr coatings deposited on two different substrate materials of carbon steel and austenitic stainless steel. Coatings were deposited using industrially optimised parameters. Cavitation tests were conducted following the ASTM G32 test method in indirect mode, where there was a gap of 0.5 mm between the sonicator and the test surface. A submersed copper cooling coil controlled the temperature of the seawater. The cumulative cavitation erosion mass loss and cavitation erosion rate results are reported. The eroded substrate and coating surfaces were analysed using Scanning Electron Microscopy (SEM) in combination with energy dispersive x-ray analysis (EDX) to understand the failure modes. Coating phases were identified using x-ray diffraction. Results are discussed in terms of the cavitation failure modes and cavitation erosion rates for both the substrate and coated surfaces.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 200-207, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spray (CS) technology has proven an enormous potential in the production of composite coatings, enabling a production of materials with superior qualities such as enhanced tribological behavior. This study aims to investigate the tribological properties of CS Al-based composite coatings reinforced by quasicrystalline (QC) particles. Two different Al alloys were used as the matrix, AA 6061 and AA 2024, and mixed with Al-based QC particles (Al-Cr-Fe-Cu) at different Al/QC ratios. A room-temperature ball-on-disc test was then used to evaluate the wear resistance of the CS composite coatings in air and compared to those of the CS non-reinforced Al alloy coatings as well as cast counterparts (AA 6061-T6). We have demonstrated that CS could be employed to produce dense and thick Al-QC composites. Further, the addition of the QC particles into the structure increased the wear resistance of the matrix resistance up to 8 times.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 303-309, May 22–25, 2023,
Abstract
View Paper
PDF
For the last few years, the HVAF process has been established as a commercially used process and has gained an increasing share in the market of thermal spraying. The main thermal spray materials being used for HVAF spraying have been those based on the tungsten carbide family. Economical aspects and European regulations on chemicals management REACH (Registration, Evaluation and Authorisation of Chemicals) have motivated the demand for thinner WC based coatings, which are still dense and wear resistant. This demand has progressively increased, and the trend shows a further growth in the need for thermal spray feedstock for HVAF sprayed net shape coatings. The challenge for powder producers lies in providing suitable spray powders, with high and consistent quality as well as in considerable volume, to be able to make reliable recommendations to the users of HVAF technology. A deeper understanding of powder requirements for net shape coatings, matching the needs with new powder solutions, and appreciation of the differences in behavior or performance depending on powder type are essential to address the above challenges and constitutes the theme of this paper.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 408-413, May 22–25, 2023,
Abstract
View Paper
PDF
In particular, eutectic HEAs (EHEAs) are of interest for coating technology. The microstructure of these multiphase systems is determined by the cooling conditions during solidification and the heat treatment condition. High cooling rates can suppress segregation and allow the formation of a supersaturated solid solution microstructure. Therefore, the property profile differs from that of the equilibrium state. The effect of cooling conditions on the functional properties of EHEA coatings has not been investigated so far. In the current study, the microstructure formation and wear resistance of the metastable EHEA Al 0.3 CoCrFeNiMo 0.75 was investigated. Laser metal deposition (LMD) of the inert gas atomized powder forms a directional vertically solidified lamellar structure. A supersaturated solid solution and a metastable BCC and HCP phase was formed. The microstructure resembles a Widmanstätten structure. By spark plasma sintering (SPS), a statistically distributed orientation of the fine lamellae was produced. The highest microhardness and oscillating wear resistance were detected for the ultrafine LMD coating. By increase of the microstructure domain size, the hardness and oscillating wear resistance decrease. This study reveals the great potential of supersaturated solid solutions of ultrafine EHEAs obtained by LMD processing with high cooling rates.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 480-486, May 22–25, 2023,
Abstract
View Paper
PDF
Thermally sprayed WC/CoCr coatings are the most established coatings in the valve industry. However, due to the high wear resistance and as-sprayed surface roughness, the surface post processing costs are very high. Near-net-shaped fine powder coatings have the possibility to reduce the costs effectively. Due to the high specific surface to volume ratio of the powders, undesired phase transformations can occur during the spraying process. To avoid such phase transformations, the novel thermal spraying process Ultra-HVOF (UHVOF) is used in this study. An extensive parameter study is carried out on the influences of the process parameters on microhardness, porosity, as-sprayed surface roughness, phase composition and wear resistance. With suitable process parameters, near-netshaped and almost pore-free coatings can be applied. Compared to a conventional HVOF sprayed WC/CoCr coating, a wear reduction by a factor of three can be achieved in a pin-on-disktest against Al 2 O 3 at a load of F = 15 N. Due to the pore-free and highly wear-resistant coatings, significantly thinner coatings can be used for the protection against corrosion and wear in valves. In addition, the required surface quality of the near-net-shape coatings can be achieved by polishing only. Thus, the novel UHVOF coatings represent a cost-effective alternative to conventionally used valve coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 503-508, May 22–25, 2023,
Abstract
View Paper
PDF
The amorphous Fe-based coating was fabricated on 304 stainless steel matrix by high velocity oxygen fuel (HVOF). The microstructure, friction properties and wear mechanism of the coating were mainly analyzed by scanning electron microscopy, X-ray diffractometer, Vickers microhardness tester, friction and wear tester, three-dimensional optical profilometer. Results show that: most of the coatings were amorphous, and the amorphous content increased first and then decreased with the increase of heat input. When the spraying parameters are kerosene flow rate 21 L/h, oxygen flow rate 56 m 3 /h, powder feeding rate 35 g/min, spraying distance 360 mm, the coating amorphous content is up to 84%, the hardness is over 842 HV 0.2 , the wear resistance advances over 2.9 times than the matrix.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 547-552, May 22–25, 2023,
Abstract
View Paper
PDF
In our laboratory, we have developed a method to simultaneously inject different powders from the central axis direction and radial direction of the cold spray nozzle and are producing a composite coating by this method. In the previous research of our laboratory, an Al-12Si alloy coating with excellent wear resistance was produced by micro-forging assisted cold spray using the simultaneous nozzle injection method of powder in the axial and radial directions. Here, Al- 12Si alloy, which has excellent wear resistance, was used for the coating-formed particles, and stainless steel was used for the micro-forging particles. However, because the micro-forging particles were hollow, they remained in the coating. In this paper, we evaluated the influence of increasing the mixing ratio of micro-forging particles instead of solid (no holes) micro-forging particles on the coating structure. At the same time, the behaviors of particles by computational fluid dynamics are also investigated.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 589-596, May 22–25, 2023,
Abstract
View Paper
PDF
Hardmetal coating compositions containing both WC and Cr 3 C 2 are less intensively studied than WC-Co(Cr) and Cr 3 C 2 -NiCr. In particular, compositions with Cr 3 C 2 as the main phase are relatively new in the market. In this contribution, two commercial agglomerated and sintered feedstock powders with similar compositions (42Cr 3 C 2 -42WC-16Ni and 45Cr 3 C 2 - 37WC-18NiCoCr) were studied. Both powders differ in their porosity and the melting behavior, as was found by DSC experiments. Coatings were deposited with a liquid-fueled HVOF process (JP 5220). Optimization of the spray conditions was evaluated with five different spray parameter sets. Coating microstructures and phase compositions, as well as microhardness HV 0.3 and abrasion wear resistance were less influenced by the spray parameter sets. At the same time, significant differences in deposition efficiency between the two compositions were observed, which might be related to the differences in the melting behavior of the compositions and the powder porosity. However, coating microhardness and abrasion wear resistance were similar for each of the spray parameter sets. Coating microstructure and phase composition were studied with a focus on the interaction between Cr 3 C 2 and WC and will be discussed in detail.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 724-729, May 22–25, 2023,
Abstract
View Paper
PDF
Self-fluxing alloys are an established thermal spray system in case of superimposed tribological and corrosive loads. A dense coating with high bonding strength can be formed by fusing. Such coating system represent the state of the art in valve technology. Diamond-like carbon (DLC) top coatings are used for friction-reduction. As an alternative approach, this study focuses on the possibility of incorporating solid lubricants in self-fluxing alloy coatings. This allows for higher local stress and failure tolerance as well as a reduced process chain. Molybdenum disulfide (MoS 2 ) was studied as solid lubricant in the self-fluxing alloy NiCrBSiFe. In this preliminary study, the optimization of the MoS 2 content with up to 10.0 wt% was performed in spark plasma sintered (SPS) bulk materials. The wear behavior under oscillating wear conditions was investigated. Besides the decrease in coefficient of friction (COF), the wear resistance was increased by incorporating MoS 2 . Furthermore, the distribution of the solid lubricants within the SPS bulk material and the influence of the production route were analyzed.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 773-779, May 4–6, 2022,
Abstract
View Paper
PDF
Deposition of hybrid plasma-sprayed coatings employing both dry powder and liquid feedstocks enables preparation of innovative coating architectures. Using this technique, miniature domains of additional (secondary) material may be introduced via the liquid feedstock route into the more conventional powder-deposited coating, providing potential benefits for the coating functionality. In this contribution, we have explored the tribological properties of hybrid coatings sprayed from alumina powder with additions of chromia (Cr 2 O 3 ), zirconia (ZrO 2 ), yttria-stabilized zirconia (YSZ), and titania (TiO 2 ) delivered from liquid feedstocks. The coatings were subjected to dry sliding wear testing and a subsequent analysis of the wear tracks to determine their wear resistance and coefficient of friction, as well as a qualitative assessment of the wear mechanisms. The hybrid coating doped with the chromia addition matched the remarkable wear resistance of highly-dense suspension-sprayed coatings. This is a significant result, especially when considering the order of magnitude better production efficiency of the hybrid coatings.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 840-842, May 4–6, 2022,
Abstract
View Paper
PDF
Laser cladding or metal deposition (LMD/DED) is widely used for wear-resistant coatings, repair and additive manufacturing applications due to the excellent properties of the deposited material. However, processes on complex 3D surfaces are often a challenge because they require time-consuming programming. This is particularly the case when no CAD data is available for the parts on which metal coatings or structures have to be applied. As a solution, we describe a digital process chain that begins with a 3D scanning process within the laser cladding machine (either robotic or CNC type). Using special software, high-quality 3D models of the scanned parts are created. For coating applications, these models are visualized on a PC. The operator can define cladding areas with just a few clicks of the mouse. Based on predefined parameters, powerful software calculates all the required tool paths. An additional simulation step can be used to verify collision-free operation. Finally, robot or CNC programs are automatically generated that can be executed immediately. Similar software is used to create 3D parts directly from CAD files. Finally, by combining both approaches, 3D geometries can be printed directly onto existing 3D freeform parts using laser metal deposition/LMD, even if their shape is arbitrary and not well documented by CAD data.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 900-906, May 4–6, 2022,
Abstract
View Paper
PDF
The HVOF sprayed WC-CoCr coatings are widely spread due to their excellent resistance against wear and corrosion. These coatings are one of the most suitable alternatives for hard chromium in many applications. Within the research project, the most suitable hard chromium alternative for hydraulic devices in aircraft is being developed and tested. This application is highly demanding not only on the functional properties of applied coatings but also on the surface quality. Grinding and polishing of the coating are not sufficient, to achieve the necessary surface properties. This study aims to optimize the superfinishing process of HVOF sprayed WC-CoCr coating. The achieved surface quality is primarily measured using profilometry. With optimized surface preparation, the tested parts for aircraft hydraulic parts are treated and tested for leakage of operating fluids and high cyclic lifespan.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 939-944, May 4–6, 2022,
Abstract
View Paper
PDF
In the semiconductor industry, plasma etching processes are widely used. Process chamber parts that are located in the plasma etching system are also exposed to the harsh environmental conditions. Thus, parts located close to the process area are typically coated with yttria to increase service life, and thus process performance. However, such yttria coatings are usually porous, and thus can be attacked by fluorine containing plasma. In order to increase the lifetime of the components in the plasma etching system, this research project aimed to improve the protective yttria layer by reducing the porosity of the protective layer. Specifically, a design of experiment was employed in which the porosity was the target value. The main effects of the coating parameters and their interactions including the surface treatment before the coating process were determined. Furthermore, the bonding of the protective coating to the component to be protected, as well as the element distribution and the coating morphology were investigated. The results and their ramifications with respect to the envisaged application will be discussed.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 205-210, May 4–6, 2022,
Abstract
View Paper
PDF
Despite their light weight, 2.3 times lighter than Al, polymers are limited to application with low thermal, wear, and abrasion demands. The enhancement of the functional surfaces of the polymers using thermal spraying techniques is a challenging task due to the thermal degradation of polymers, the low wettability, and the disparate atomic properties. The twin-wire arc spraying (TWAS) process comprises two contradictory features. Almost all spraying particles are in a molten state on the one hand, and on the other hand, the spray plume has the lowest heat output among the different thermal spraying techniques. Therefore, it is a promising spraying technique for the required surface improvement. The surface of the 3D-printed parts was metalized using two successive layers. The first layer is a TWAS coating made of low-melting ZnAl 4 to avoid thermal degradation and provide a bond coat. The topcoat is also applied using a TWAS process and was made out of Ni-WC-Co as cored wires. The top hard coating has improved the wear resistance of the polymers by 14.6 times. The erosion of the coated and uncoated specimens was determined using a low-pressure cold gas spray gun. Ni-WC-Co coating led to more than five times higher erosion resistance.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 268-271, May 4–6, 2022,
Abstract
View Paper
PDF
Carbides are interesting materials for many wear resistant and high temperature applications, however, the production of coatings with these materials represents a significant challenge as they tend to oxidise or decompose into gaseous phases when they are exposed to extreme thermal spray conditions. An innovative method merging suspension and solution precursors was developed to allow the production of carbide composite coatings. Suspensions of carbides and borides were modified with the addition of oxide precursors to obtain composite coatings by high-velocity oxy-fuel (HVOF) thermal spray. The transformation of these oxides precursors and their subsequent melting during spraying contribute to protect the carbides from oxidising conditions, avoid their degradation during the spray process and support the development of dense coatings, as it was demonstrated by dispersive X-ray spectroscopy and X-ray diffraction analysis. The relationships between processing and microstructure were studied in terms of porosity phase distribution and mechanical properties, proving that this novel approach could be applied to obtain coatings of materials that are prone to decompose during thermal spraying.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 467-474, May 4–6, 2022,
Abstract
View Paper
PDF
Thermally sprayed WC/CoCr coatings are established in the valve industry for wear protection. However, conventional coatings have to be cost-intensively postprocessed. Therefore, the aim of this study is to develop near net shaped (nns) WC/CoCr-coatings with a high wear resistance in order to avoid the expensive grinding postprocess. For the development of the nns coatings a parameter study is used to investigate the influence of the stand-off distance and hydrogen volume flow rate in the HVAF process. The parameter study indicates the influence of the hydrogen volume flow and the stand-off distance on the porosity, microhardness and wear resistance of the coatings. The developed coatings exhibit a low porosity and high wear resistance. Through the correlation of the coating properties with the process parameters, promising parameter ranges for a further development of HVAF-sprayed nns coatings of WC/CoCr can be identified. With these results, first benchmarks for HVAF process parameters, hydrogen flow rate and stand-off distance, could be delivered, advancing the overall goal of reducing manufacturing costs of valves.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 504-510, May 4–6, 2022,
Abstract
View Paper
PDF
The adaptation of medium-entropy alloys (MEAs) by minor alloying constituents allows a targeted modification of the property profile of this material class for surface protection applications. In the present work, the potential of BSiC additions in the MEA system CrFeNi as base for adapted feedstock materials for thermal spraying is investigated. The alloy development was carried out in an electric arc furnace. Compared with the initial alloy, a significant increase in the wear resistance of the castings was demonstrated for the adapted alloy composition. Subsequently, powder was produced and characterized by inert gas atomization, followed by processing via high velocity oxy-fuel (HVOF) spraying. The tribological behavior was evaluated comparatively for all manufacturing variants considered. A good agreement in the property profile was determined, confirming the basic alloy development approach based on metallurgical processes. The evaluation of the process-structure property relationships confirms the great potential of adapted alloy systems for complex alloys in the field of surface engineering.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 543-552, May 4–6, 2022,
Abstract
View Paper
PDF
Iron-based coatings are often considered as replacement of hard chromium and WC-Co, as they pose lower health and environmental impact. In many cases the combination of mechanical and chemical properties of ferrous based alloys may be satisfactory and their relatively low cost make these coatings an interesting candidate for many applications. This study is inspired by opportunities to harden the ferrous base materials by strain hardening, solid solution strengthening, dispersion strengthening, and precipitation hardening. Already commercially available Fe-based coating materials with precipitates of mixed carbides and borides in the metastable austenitic matrix achieve a high hardness. In this study the cavitation erosion and abrasion resistance of various Fe-based coatings produced by HVAF and HVOF processes were investigated. Two experimental precipitation containing materials were prepared, and the sprayed coatings were tested for abrasive and cavitation erosion wear. In addition to precipitations, the importance of proportion of ferrite and retained austenite phases were studied by affecting the microstructure by heat treatments as the ability of different phases to affect hardening and ductility may become crucial in generating desired material properties. The properties of experimental and some commercial Fe-based alloys are compared with WC-Co and Cr 3 C 2 -NiCr coatings by property mapping.
1