Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 1694
Mechanical properties
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 30-37, May 22–25, 2023,
Abstract
View Paper
PDF
The Cold spray (CS) is a promising solid-state additive manufacturing method. The interesting physics involved in the CS process including cold, high strain rate, adiabatic and severe plastic deformation results in a unique and complex structure of CS deposits at different length scales that directly determines the properties of the deposits. Therefore process- structure properties (performance) (PSP) linkages explorations are pivotal. Integrated computational materials engineering (ICME) methods in complement with experimental analyses are required to evaluate materials properties and behaviour in PSP links exploration. Finite element modelling is used to simulate the thermomechanical response of materials and evolution of field variables in CS, i.e stress, strain, strain rate, and temperature, at structural scales. Molecular dynamics modellings of nano-particle impact have provided useful insights into atomic-scale phenomena of individual particle impact while the modelling of microstructure evolution in micro and mesoscale has yet to be investigated. In this study, we developed and implemented a thermodynamic phase field simulation method to capture the structure evolution of CS composite Ni-Ti deposit upon post-spray heat treatment (PSHT) in microstructure scale. The external or internal stimuli such as heat and strain either generated in the system because of phase transformation or stored as internal energy upon CS process are accounted for. The interface mobility and microstructure development are calculated by minimization of Gibbs free energy of the system. The comparison of the simulated microstructure with experimental results confirms that the phase field modelling precisely predicts the microstructure evolution of the CS deposits upon PSHT.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 38-45, May 22–25, 2023,
Abstract
View Paper
PDF
A variety of process parameters affect the properties of the deposited coatings in the High Velocity Oxygen Fuel (HVOF) spraying process. In fact, the quality of coatings can be improved without changing feedstock or deposition technology by the application of optimized spraying process parameters. In this study, a large set of data “Big Data” is used to create a variety of machine learning models for prediction of porosity content and hardness values of HVOF deposited coatings. A set of process parameters was selected as validation run and actual HVOF coating was deposited using those parameters. The porosity level and hardness were measured and compared to those predicted by models. The models differ based on the number of neurons utilized in each layer for the calculations. A model with six neurons could predict closest porosity level and the one with three was the best in prediction of hardness. The final model could be obtained by running data through both models. Through this study, a robust machine learning model for the optimization of HVOF process parameters will be developed that could be used for other coatings and thermal spraying techniques.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 46-53, May 22–25, 2023,
Abstract
View Paper
PDF
Thermal-sprayed coatings have been extensively used in aerospace with the main purpose to overcome critical challenges such as abrasive wear, corrosion, and erosion under high temperatures and pressures. Such protective coatings can also play a crucial role in optimizing the efficiency of gas turbine engines and therefore in reducing fuel consumption and CO 2 emissions. CuAl-based thermal sprayed coatings are commonly employed in tribological interfaces within gas turbine engines to improve the fretting wear resistance. These coatings are typically deposited by more traditional thermal spray techniques such as Air Plasma Spray (APS), which can result in high amounts of oxidation within the coating. The main purpose of this study is to critically evaluate lower temperature deposition techniques such as High Velocity Oxygen Fuel (HVOF). More specifically, commercially available Cu-10Al powders were deposited by APS and HVOF and compared in terms of their microstructural, mechanical properties, and tribological behavior at various temperatures. The results showed that the friction coefficient for both coatings was equivalent at room temperature while it was lower for the APS coating at high temperature. Similarly, the specific wear rates showed little difference between the different deposition processes at room temperature while the APS coating had a lower wear rate at elevated temperature when compared to the HVOF coating. The differences in the friction and wear behavior were attributed to differences in the interfacial processes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 70-76, May 22–25, 2023,
Abstract
View Paper
PDF
Plasma Transferred Wire Arc (PTWA) is a well-established thermal spray process that is used in high-volume production by multiple automotive OEMs. Benefits of these PTWA thermal spray coatings include closer bore spacing, improved thermal transfer, lower bore distortion, increased resistance to corrosion and abrasion, reductions in weight and friction, enhanced durability, and product cost savings. For automobiles, this leads to increased fuel economy and lower emissions. Millions of engine cylinder bores per year are coated using the PTWA thermal spray process. To ensure optimal surface coatings, it is vital to monitor the process variables. Although some process monitoring already exists in current production, new technological advancements allow for additional variables to be monitored. Arc voltage is of particular importance as it can be viewed real-time in situ to the PTWA process to determine the curvature of the feedstock wire. Straight wire is ideal for achieving peak system performance. If the wire has excessive curvature, it can lead to out-of-tolerance conditions that detrimentally affect the quality of the surface coating. Therefore, in-situ monitoring of wire curvature is both desirable and necessary for producing the highest quality PTWA thermal spray coatings possible.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 77-84, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spray (CS) is a solid-state process for depositing metal powder, accelerated by a high-velocity gas such that it bonds to the substrate metal through kinetic impact energy. Although the technology is finding applications in non-load bearing repair and coating applications, work is needed in the quality control procedures for CS for its use in load bearing structural applications. in this study, the viability of electrical conductivity and through thickness ultrasound wave velocity measurement methods are studied to serve as a means for nondestructive quantitative measurement methods for quality control in CS and potentially other additive manufacturing (AM) methods. Eddy current, ultrasound, porosity, hardness, and uniaxial tensile strength tests were conducted on copper and aluminum samples that were manufactured using CS. Ultrasound measurements of longitudinal wave velocity and eddy current electrical conductivity measurements showed good correlation with process conditions that were varied to control particle velocity to intentionally produce samples with varying deposition quality. Influence of process conditions on particle velocity was confirmed via particle image velocimetry. Porosity, hardness, and tensile test results were further correlated to ultrasound wave velocity and electrical conductivity measurements. The results of this work show that nondestructive testing methods can be effectively used to quantitatively assess the cold spray products for quality control purposes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 85-90, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spray additive manufacturing technology (CSAM) is a progressive method of 3D print of metals and alloys. Its inherent work principles allow production of the components below the material melting points, thereby avoiding several undesired material degradation processes. Among other inherently associated phenomena, the work principles of CSAM involve extreme plastic deformation of the materials, triggering formation of several types of lattice defects. Positron annihilation spectroscopy (PAS) is an analytical technique capable of studying deformation on the atomic scale level, even in extremely deformed materials. In our study, the first historical analysis of CSAM materials by PAS was carried out. For the demonstration, four different base metals were selected (Al, Cu, Ni, Ti). For these, the character of dislocations and vacancies was observed and the respective densities were quantified. The results show that the extremely high strain rate in the cold spray process prevents recovery of vacancies by diffusion to sinks. The deformation-induced vacancies agglomerate into small vacancy clusters. Hence, metals deposited using CSAM contain not only dislocations but also vacancy clusters. Both kinds of defects were detected by positron annihilation spectroscopy.
Proceedings Papers
Comparative Study of Ni-, Co- and Fe-Based Laser Cladding Coatings for Wear and Corrosion Resistance
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 104-111, May 22–25, 2023,
Abstract
View Paper
PDF
Among hardfacing processes using welding, laser cladding is nowadays one of the most efficient surface coating techniques. It is widely used to increase wear and corrosion resistance of machine parts as a result of the unique process characteristics such as low heat input (smaller heat affected zone), distortion free clad layers, lower dilution rate, finer coating microstructure as well as good metallurgical bonding at the coating/substrate interface. A wide range of new hardfacing materials and corrosion-resistant alloys are available on the market and in this study, different coatings of Ni-, Co- and Fe-based alloys as well as carbide-based metal matrix composites have been deposited by laser cladding for benchmarking purposes. Coatings were deposited onto mild steel substrates using a high-power diode laser. Coating microstructure and hardness were investigated as well as their tribological properties such as 2-body and 3-body abrasion, slurry abrasion and cavitation erosion resistance. Corrosion performance of coatings was also investigated with the salt spray test. Coatings are ranked according to their performance in the different tests and relationships between microstructure and coating properties are discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 112-118, May 22–25, 2023,
Abstract
View Paper
PDF
In this study, microstructural characterization is conducted on WC-17Co coatings produced via High Velocity Oxygen Fuel (HVOF), High Velocity Air Fuel (HVAF), and Cold Spraying (CS). All coatings prepared were observed to be of good quality and with relatively low porosity content. SEM study showed important microstructural features and grain morphologies of each coating. While composition of feedstock material was approximately similar, elemental composition using EDS showed higher Co content and lower WC in the CS deposited coating. XRD experiment identified formation of more complex oxides and tungsten phases in coatings deposited technologies involving melting of powders such as HVOF and HVAF. These phases consisted mainly of cobalt oxides and brittle phases such as W 3 Co 3 C or W 2 C caused by decarburization of the tungsten carbide particles. Hardness of all coating samples were examined and CS deposited coating exhibited considerably lower hardness compared to the other two coating samples instead of having significantly lower porosity content. It could be contributed to dissociation and physical loss of hard carbide phase during high velocity impact of particles in CS process. It is in good agreement with detection of higher amount of cobalt in CS deposited coating material. It is strongly believed that results obtained from this study can be used for future investigation in thermo-mechanical properties of WC-Co coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 119-126, May 22–25, 2023,
Abstract
View Paper
PDF
The cavitation performance of wear resistant cermet coatings can deteriorate in a corrosive environment. This investigation therefore considered the cavitation resistance in seawater of thermally sprayed High Velocity Oxy Fuel (HVOF) WC-10Co-4Cr coatings deposited on two different substrate materials of carbon steel and austenitic stainless steel. Coatings were deposited using industrially optimised parameters. Cavitation tests were conducted following the ASTM G32 test method in indirect mode, where there was a gap of 0.5 mm between the sonicator and the test surface. A submersed copper cooling coil controlled the temperature of the seawater. The cumulative cavitation erosion mass loss and cavitation erosion rate results are reported. The eroded substrate and coating surfaces were analysed using Scanning Electron Microscopy (SEM) in combination with energy dispersive x-ray analysis (EDX) to understand the failure modes. Coating phases were identified using x-ray diffraction. Results are discussed in terms of the cavitation failure modes and cavitation erosion rates for both the substrate and coated surfaces.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 200-207, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spray (CS) technology has proven an enormous potential in the production of composite coatings, enabling a production of materials with superior qualities such as enhanced tribological behavior. This study aims to investigate the tribological properties of CS Al-based composite coatings reinforced by quasicrystalline (QC) particles. Two different Al alloys were used as the matrix, AA 6061 and AA 2024, and mixed with Al-based QC particles (Al-Cr-Fe-Cu) at different Al/QC ratios. A room-temperature ball-on-disc test was then used to evaluate the wear resistance of the CS composite coatings in air and compared to those of the CS non-reinforced Al alloy coatings as well as cast counterparts (AA 6061-T6). We have demonstrated that CS could be employed to produce dense and thick Al-QC composites. Further, the addition of the QC particles into the structure increased the wear resistance of the matrix resistance up to 8 times.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 235-241, May 22–25, 2023,
Abstract
View Paper
PDF
The current work numerically evaluates the efficacy of a coflowing nozzle for cold spray applications with the aim to mitigate nozzle clogging by reducing the length of its divergent section. The high-pressure nitrogen flow through convergentdivergent axis-symmetric nozzles was simulated and the particle acceleration is modelled using a 2-way Lagrangian technique which is validated using experimental results. An annular co-flow nozzle with a circular central nozzle has been modelled for nitrogen gas. Reduction of nozzle divergent length from 189 mm to 99 mm showed an approximate 2.2% drop in particle velocity at high pressure operation while no variation at lower pressure operation was observed. Co-flow was introduced to the reduced nozzle length to compensate for particle velocity loss at higher operating conditions and it was found that co-flow facilitates momentum preservation for primary flow resulting in increased particle speed for a longer axial distance after the nozzle exit. The reduced divergent section nozzle, when combined with co-flow, is comparable to the original length nozzle.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 242-249, May 22–25, 2023,
Abstract
View Paper
PDF
The performance of two distinct coating materials under alumina particle impingement was tested in this study. CrMnFeCoNi and WC-Ni coatings were applied to 2205 duplex stainless steel substrates using cold spray method with nitrogen as the process gas. In between the substrate and the high entropy alloy coating, an interlayer coating of 316 stainless steel was used. The presence of WC particles in the WC-Ni composite coatings was confirmed by SEM cross sectional inspection. Following deposition, the coatings were heat treated in an air furnace. The influence of heat treatment holding time on the WC-Ni coatings was studied using chemical analysis by X-ray diffraction. Heat treatments peak temperatures for the WC/Ni- Ni and high entropy alloy coatings were 600°C and 550°C, respectively. Coatings microhardness and porosity volume fraction were measured for all the samples. The HEA coating outperformed the WC/Ni-Ni hardness but exhibited a higher level of porosity. The coatings were then subjected to erosion experiments using alumina particles with variable impact angles (30°, 60°, and 90°). To compare the different materials, an average erosion value was calculated for each target specimen. The WC/Ni-Ni as-sprayed coating was the most effective against a 60° impingement angle. The HEA coating, on the other hand, demonstrated greater resistance to impact angles of 30° and 90°. SEM was utilized to examine the eroded areas and determine the main mechanisms of erosion.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 250-257, May 22–25, 2023,
Abstract
View Paper
PDF
Tailoring strength and ductility in additive manufacturing or repair is key to successful applications. Therefore, cold spraying must be tuned for maximum amounts of well-bonded internal interfaces as well as sufficient softening of the highly workhardened deposit. Zinc (Zn) with its low melting temperature is an ideal model system to study phenomena associated with high strain rate deformation and local temperature distributions, both, in single impacts and thicker deposits. Bonding and recrystallization can be facilitated by covering selected wide parameter regimes in cold spraying. Despite the low temperatures, Zn single splats already show recrystallization at internal interfaces, the respective amounts then scaling with increasing process gas temperatures. At higher process temperatures, deposits are almost fully recrystallized. The recrystallization seems to improve bonding at internal and at deposit-substrate interfaces. Under optimum conditions, an ultimate deposit cohesive strength of up to 135 MPa and an elongation to failure of 18.4% are reached, comparable to that of laser-manufactured or bulk Zn parts. This demonstrates a welltuned interplay between high amounts of bonded interfaces and softening by recrystallization that allows for deriving bulk-like performance of cold sprayed material without additional posttreatments. Correlations between microstructures, mechanical properties, and fracture mechanisms supply information about prerequisites needed for reaching high ductility as obtained in damage and failure modes of deposits and bulk materials in global and local approaches.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 266-272, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spraying (CS) of high strength materials, e.g., Inconel 625 is still challenging due to the limited material deformability and thus high critical velocities. Further fine tuning and optimization of cold spray process parameters is required, to reach higher particle impact velocities as well as temperatures, while avoiding nozzle clogging. Only then, sufficiently high amounts of well-bonded particle-substrate and particle-particle interfaces can be achieved, assuring high cohesive strength and minimum amounts of porosities. In this study, Inconel 625 powder was cold sprayed on carbon steel substrates using N 2 as propellant gas under different refined spray parameter sets and powder sizes for a systematic evaluation. Coating microstructure, porosity, electrical conductivity, hardness, cohesive strength and residual stress were characterized in as-sprayed condition. Increasing the process gas temperature or pressure leads to low coating porosity of less than 1 % and higher electrical conductivity. The as-sprayed coatings show microstructures with highly deformed particles and well bonded internal boundaries. X-ray diffraction reveals that powder and deposits are present as γ- solid-solution phase without any precipitations. By work hardening and peening effects, the deposits show high microhardness and compressive residual stresses. With close to bulk material properties, the optimized deposits should fulfill criteria for industrial applications.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 288-294, May 22–25, 2023,
Abstract
View Paper
PDF
Successful cold spray of tool steels and other hard steels would unlock several opportunities, including the repair of molds as well as ships and heavy industry components. However, the high hardness of typical atomized steel powders strongly limits their cold sprayability. It has been recently demonstrated that heat treatment in a rotating furnace can significantly improve H13 cold sprayability via softening and agglomeration. In this work, this powder modification method is extended to a range of transformation hardenable steels: 4340, SS420, A588, 1040 and P20. The results show that powder heat treatment improves the powder deposition efficiency and the quality of the final cold sprayed coating, probably as the result of the decreased powder micro-hardness. The effects of the powder heat treatment atmosphere, a key parameter, will also be presented and discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 303-309, May 22–25, 2023,
Abstract
View Paper
PDF
For the last few years, the HVAF process has been established as a commercially used process and has gained an increasing share in the market of thermal spraying. The main thermal spray materials being used for HVAF spraying have been those based on the tungsten carbide family. Economical aspects and European regulations on chemicals management REACH (Registration, Evaluation and Authorisation of Chemicals) have motivated the demand for thinner WC based coatings, which are still dense and wear resistant. This demand has progressively increased, and the trend shows a further growth in the need for thermal spray feedstock for HVAF sprayed net shape coatings. The challenge for powder producers lies in providing suitable spray powders, with high and consistent quality as well as in considerable volume, to be able to make reliable recommendations to the users of HVAF technology. A deeper understanding of powder requirements for net shape coatings, matching the needs with new powder solutions, and appreciation of the differences in behavior or performance depending on powder type are essential to address the above challenges and constitutes the theme of this paper.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 323-329, May 22–25, 2023,
Abstract
View Paper
PDF
The application of thermally sprayed coatings on CFRPs has gained great interest to enhance thermal and tribological properties and several processes have been optimized. However, for the coating of internal surfaces of tubes there is no sufficient technical solution. This paper introduces a novel and unique process technique for coating the internal surfaces of CFRP tubes using the transplantation of thermally sprayed coatings. A negative shape tube with defined surface and material properties was used as a mandrel and coated using atmospheric plasma spraying (APS). The CFRP was then produced using filament winding onto the coating, and after curing, the specimen was separated from the mandrel. With this process innovation, CFRP tubes with internal ceramic or metallic coatings can be produced without any thermal degradation of the polymeric matrix or damage to the carbon fibers. Compared to conventional coating methods, this novel process technique has several advantages. It allows for the production of internal coatings with low roughness of R z = 10 μm as sprayed without post-processing. The specimens also have a significantly lower tendency to corrode compared to conventional coated CFRPs. A high adhesion strength of the coatings of 15.9 MPa was achieved and the hardness of the internal ceramic coating is 918 HV0.1
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 357-364, May 22–25, 2023,
Abstract
View Paper
PDF
In the current work, a NiCrAlY and Fe-based alloy are HVOF-sprayed due to the combination of high coating density and customizable coating properties. The oxygen to fuel gas ratio was varied to modify coating defects in a targeted manner. The results demonstrate material dependent defect mechanisms. Further investigations regarded residual stresses, hardness, and electrical conductivity. In particular, the thermal diffusivity proved to be very promising. Moreover, the coatings were compared with previous work on arc-sprayed coatings of similar chemical composition regarding insulation capability.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 380-385, May 22–25, 2023,
Abstract
View Paper
PDF
In this study, Al 2 O 3 -based coatings with varying TiO 2 contents (0, 3, 13, and 40%) were fabricated using atmospheric plasma spraying technique. To compare the superiority of the samples, their thermal properties (thermal conductivity and thermal shock resistance) were characterized. As observed, Al 2 O 3 - 40%TiO 2 (A-40T) coating exhibited relatively superior thermal insulation and thermal shock resistance at 600°C. According to the microstructure and phase analysis, this finding can be attributed to the special phase, Al 2 TiO 5 , and the pre-existing microcracks inside the coating. Thus, A-40T manifested excellent characteristics for thermal insulation application compared with pure Al 2 O 3 and low-TiO 2 content coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 392-399, May 22–25, 2023,
Abstract
View Paper
PDF
Composite coatings using mixed alloy matrices reinforced with carbon-based solid lubricants as feedstock materials were prepared by atmospheric plasma spraying. The aim of the present study was to investigate the tribological characteristics of such coatings exploring potential benefits of CNTs as nano-additive to reduce friction and wear, improving lubrication conditions during operation in tribosystems, such as piston ring – cylinder liner systems. The chemical composition of feedstock materials and the thermal spray parameters during coatings deposition are correlated to friction coefficient and wear rate using pin-on-disk measurements. The developed coatings hybrid behaviour is studied. Co-based cermet as well as metal alloy anti-wear performance along with the promoted lubrication conditions during operation is revealed. The dependence of the developed coatings quality and performance on the characteristics of the feedstock powder is thoroughly discussed.
1