Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Dielectric constant
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 547-550, May 4–7, 2009,
Abstract
View Paper
PDF
BaTiO 3 coatings are very promising for a wide range of applications in microelectronics because of their high dielectric constant and low leakage current. In this study, atmospheric plasma spraying is used to produce thick BaTiO 3 coatings and their microstructural features and dielectric properties are examined. The coatings were mainly composed of amorphous phase with small amounts of crystalline phase due to the incorporation of partially-molten droplets. The as-sprayed coatings were crystallized to BaTiO 3 by low temperature heat treatment and a mixture of BaTiO 3 and BaTi 2 O 5 at higher temperatures. At 1200 °C, the coating formed an equiaxed grain structure due to sintering effects and the dielectric constant was significantly improved.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 283-285, May 10–12, 2004,
Abstract
View Paper
PDF
Physical characteristics of Atmospheric Plasma Sprayed (APS) Alumina coating and Low Pressure Plasma Sprayed (VPS) Alumina coating were investigated. High purity Alumina powder was used for thermal spraying in this test. As electrical properties, the volume resistivity, dielectric constant, and the dielectric breakdown voltage were measured at R.T. to 873K. And the coefficient of thermal expansion, and the thermal conductivity were measured at also R.T. to 873K, as thermal properties. Mechanical properties, such as the Young’s modulus, the bending strength, and the cross-sectional hardness value were measured at R.T. As a test result, the Alumina coatings using both APS and VPS have similar properties except for the cross-sectional hardness value that was higher when sprayed by VPS.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 495-500, May 8–11, 2000,
Abstract
View Paper
PDF
BaTiO3 has been successfully sprayed by HVOF to produce dense 25-150 µm thick deposits for use as dielectric and capacitive layers within prototype multilayer conformal electronics. Parameter optimization has been shown to play a critical role in the effective spraying of these materials as thin structurally homogeneous deposits. The affect of standoff distance and combustion chamber size on the phase structure of the coatings have been studied and related to the dielectric properties of the layer. The proportion of crystalline to amorphous phase was found to be critically dependent upon the degree of melting of the particles in the flame and the rate of cooling of the deposits. The crystalline/amorphous ratio is directly related to the dielectric properties of the layer with greater crystallinity giving higher values of dielectric constant. Microcracks and splat/splat interfaces are also believed to adversely affect the dielectric properties. The maximum dielectric constant (K) values achieved using the HVOF method for deposition have been in the range 70-115.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 793-797, October 7–11, 1996,
Abstract
View Paper
PDF
Electrical properties of plasma-sprayed aluminum oxide coatings were measured at temperatures up to 600 °C. High purity (>99.5 wt% pure Al 2 O 3 ) alumina powders were plasma-sprayed on stainless steel substrates over a range of power levels, using two gun configurations designed to attain different spray velocities. Key electrical properties were measured to evaluate the resultant coatings as potential insulating materials for electrostatic chucks (ESCs) being developed for semiconductor manufacturing. Electrical resistivity of all coatings was measured under vacuum upon heating and cooling over a temperature range of 20 to 600 °C. Dielectric constants were also measured under the same test conditions. X-ray diffraction was performed to examine phase formation in the coatings. Results show the importance of powder composition and careful selection and control of spray conditions for optimizing electrical behavior in plasma-sprayed aluminum oxide, and point to the need for further studies to characterize the relationship between high temperature electrical properties, measured plasma-spray variables, and specific microstructural and compositional coating features.