Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 39
Oxygen content
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 736-742, May 4–6, 2022,
Abstract
PDF
This paper presents the results of two metals coatings, molybdenum and tantalum, prepared by Controlled Atmosphere Plasma Spray (CAPS) onto Al 6061 substrates that were thermal cycled to calculate the effective coating modulus. Traditional uniaxial tensile testing samples were prepared from thicker duplicate coatings for comparison, as well as to measure thermal expansion properties and oxygen and nitrogen content. The molybdenum samples cut from thicker coatings were un-able to be tensile tested due to their fragility. Thermal cycle testing of molybdenum on an Al 6061 substrate was found to have a modulus approximately 18 to 19% of literature values for bulk molybdenum using the bi-layer beam thermal cycling method. Additionally, non-linear modulus behaviour was observed in the molybdenum sample when enough thermal strain was induced to shift the coating from a compressive to tensile stress state. The tantalum coating was found to have a modulus approximately 42 to 46% of literature values for bulk tantalum using the bi-layer thermal cycling method. Traditional tensile testing measured a modulus approximately 44 to 46% of bulk, which shows good agreement between the two methods and supports that the bi-layer thermal cycling method is valid for plasma sprayed refractory metal coatings.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 410-415, May 24–28, 2021,
Abstract
PDF
Thermal spray coatings are widely used to protect materials from corrosion, wear, and oxidation, but they have yet to reach their full potential because of porosity limitations and the detrimental effects of oxidation on interlamellar bonding. This paper investigates an atmospheric plasma spraying process that deposits oxide-free dense metallic coatings with well bonded lamellae. The process produces ultrahigh temperature metallic droplets, up to 2650 °C, using specially designed powders that are deoxidized in-flight through the evaporation or gasification of oxides. The impact of these oxide-free ultrahigh temperature droplets has a spreading-fusing, self-metallurgical bonding effect resulting in fully dense bulk-like metallic coatings. Various coating materials, including NiCrMo, 304SS-Mo, NiCrBSi, and Al, are investigated, demonstrating the versatility of the new technique.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 504-511, May 26–29, 2019,
Abstract
PDF
In this study, NiCr alloy coatings were deposited by arc spraying using different combinations and mixtures of pressurizing gases and other process modifications. Coating properties were examined mainly by SEM, EDS, and conductivity measurements. The results show significantly reduced oxygen contents and improved coating morphologies compared to reference coatings produced using current plasma processes. Improved microstructure is shown to have a positive effect on surface quality and specific resistivity, making it possible to texture arc-sprayed coatings just as successfully as the plasma-sprayed reference layers. Moreover, the temperature coefficients and resistivities of arc-sprayed NiCr were found to be superior to those of conventionally manufactured coatings.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 505-510, June 7–9, 2017,
Abstract
PDF
In the course of this investigation, thermal spraying with different fuel and shroud gas combinations was investigated in terms of its effect on the in-flight particle properties (temperature, velocity) and on the final coating properties (coating thickness, porosity, oxygen content and corrosion behaviour). Independent on the shroud gas, the particle in-flight temperature and velocity were highest when using ethylene as fuel gas and lowest when using propane. Methylene resulted in intermediate properties. The change in the shroud gas from air to nitrogen generally resulted in lower in-flight particle temperatures and also lower velocity. The coating properties in terms of porosity and oxygen content directly correlated to the particle in-flight properties. With decreasing velocity and increasing temperature, the porosity and the oxygen content increased, respectively. The corrosion behaviour of the nickel coatings was studied in 0.5 M sulfuric acid media by means of potentiodynamic polarization curves. Good corrosion properties were observed when methylene and air served as fuel gas and shroud gas, respectively.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 529-534, May 21–24, 2012,
Abstract
PDF
Recent developments of High-Velocity Air-Fuel (HVAF) spraying and blasting focused on a substantial increase of spray particles velocity. The efforts further improved coating quality, allowing deposition of metallic and carbide-base coatings non-permeable to gas at thickness as low as 40-50 micron. The coatings demonstrate low dissolved oxygen content, a favorable combination of high hardness and toughness. Coupled with the enhanced technological efficiency of modern HVAF equipment, this initiated not only the acceptance of HVAF technologies in established thermal spray markets in the oil and gas industry, but also the development and successful implementation of new coating applications. The examples are wear and corrosion resistant tungsten carbide-based coatings on hydraulics rods of dock cranes, corrosion resistant Ni-Cr-Mo-type coatings on vessels of sulfur removal equipment, tungsten carbide coatings on restriction grid plates and slide gates of catalyst towers, high-temperature erosion resistant chromium carbide- based coatings on thermowells and valve stems, wear and cavitation resistant Co-Cr-W-C-type and carbide coatings on housing wear rings and impeller hubs of high-temperature pumps.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 60-65, September 27–29, 2011,
Abstract
PDF
The adhesion mechanisms involved in the cold spray coatings are not still well elucidated. The quality of the deposit does depend mainly on particles and dynamic characteristics (which result from nozzle type, nozzle-substrate distance, etc.). The present work is based on the study of particle-substrate and particle-particle interfaces in the tantalum-copper coating-substrate system. The content focuses on the influence of the oxygen content in the starting powder on interface features, consequently on coating properties. Tantalum powders with different oxygen levels were studied using SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Microanalysis). Laser shock spallation of cold-sprayed Ta coatings was developed as a reliable and flexible process to achieve Ta spalls to be deposited at a high-velocity onto Cu targets. The velocity due to the laser shock could be controlled to be similar to that of particles in conventional cold spray. This results in Ta-Cu interfaces, the study of which was carried out to go into interface phenomena involved in cold spray, using TEM (Transmission Electron Microscopy) in particular. Results were compared to those obtained from laser shock spallation of Ta bulk specimens (i.e. made of a conventional Ta sheet). The role of powder oxidation on interface soundness was exhibited. Adhesion was shown to be all the lower as powder oxygen content was higher, using LASAT (“ Laser Shock Adhesion Test”) in addition to direct observation of interfaces. Results were exploited to discuss properties of the corresponding Ta coatings onto Cu, i.e. which were cold sprayed using powders with different oxygen contents.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 266-270, September 27–29, 2011,
Abstract
PDF
A conventional GTV K2 kerosene fuel HVOF spraying system has been modified with the aim to achieve process conditions comparable to cold gas spraying concerning the average particle velocities and surface temperatures in the spray distance. The employed measurements include the use of expansion nozzles that have been optimized for supersonic conditions up to a Mach number of 2.5 and the use of combustion chambers with reduced critical diameters that provide increased combustion chamber pressures up to 1600 kPa. Copper powders with different size fractions and oxygen content are sprayed with the novel HVOF technology. Coatings are analysed concerning their microstructure, oxygen content and electrical conductivity. In-flight particle velocities and surface temperatures are determined by the GTV NIR Sensor. Results are compared with those obtained for cold gas spraying using identical powders. The new HVOF technology permits the production of copper coatings that show similar levels of porosity, oxygen content and electrical conductivity like cold gas sprayed coatings. Also aluminium powder has been sprayed successfully with the novel technology. In-flight particle velocities can be almost as high as in modern cold gas spraying systems. Coatings are analysed and show a microstructure comparable to cold gas sprayed coatings.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 504-508, September 27–29, 2011,
Abstract
PDF
In the present work, TiO 2 (rutile)-2.5vol.%Ag composite powders produced by mechanical milling were detonation sprayed under different atmospheres using acytelene as a fuel. The atmosphere of spraying was set to be reducing or oxidizing by changing the O 2 /C 2 H 2 mole ratio. Reduction of TiO 2 to Ti 3 O 5 occurred in the coatings deposited under a reducing atmosphere (O 2 /C 2 H 2 =1.05) when particles were heated to reach a molten or a semi-molten state. In the coatings sprayed using a stoichiometric O 2 /C 2 H 2 =2.5 mixture, the major phase was rutile. The composition of the atmosphere does not only determine the chemical environment for the sprayed powders, but also influences the temperature conditions. Increasing oxygen content in the explosive mixture led to much higher temperatures of the sprayed particles as was calculated using a previously elaborated model. When titanium dioxide did not reach melting, the coatings were porous with a spongy surface. Coatings formed by fully or partially molten particles possessed a denser structure. Silver particles experienced melting during spraying but remained uniformly distributed in the coatings. This study demonstrated that careful selection of the composition of the spraying atmosphere offers potential of controlling the phase composition and microstructure of the detonation sprayed coatings.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 521-524, September 27–29, 2011,
Abstract
PDF
For the development and quality control of highly electrically conductive coatings, a device is required by which the electric conductivity can be measured. For this purpose a handheld device for measuring the electric conductivity of nonferrous metals in a nondestructive manner was tested. The measurement principle is based on an eddy current sensor which allows determining the electric conductivity within seconds. The method fulfills the demands for using it in the environment of a job shop for thermal spraying. Coatings applied with different thermal spraying methods like cold gas, HVOF, electric arc or flame spraying have been examined. Thus, it will be presented a comparison of the electric conductivity dependent on different spraying methods. Additionally, important edge conditions for spraying and measuring the conductivity of highly electrically conductive coatings like the influence of the oxygen content of the powder, the minimal coating thickness measurable with the device and the influence of the surface roughness onto the measurement were analyzed.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 656-661, September 27–29, 2011,
Abstract
PDF
Zirconium (Zr) metal is of interest for chemical corrosion protection and nuclear reactor core applications. Inert chamber plasma spraying has been used to produce thin Zr coatings on stainless steel (SS) substrates. The coatings were deposited while using transferred arc (TA) cleaning/heating at 5 different current levels. In order to better understand thermal diffusion governed processes, the coating porosity, grain size and interdiffusion with the substrate were measured as a function of TA current. Low porosity (3.5% to < 0.5%), recrystallization with fine equiaxed grain size (3-8 µm diameter) and varying elemental diffusion distance (0-50 µm) from the coating substrate interface were observed. In addition, the coatings were low in oxygen content compared to the wrought SS substrates. The Zr coatings sprayed under these conditions look promising for highly demanding applications.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 857-862, September 27–29, 2011,
Abstract
PDF
In the past years a number of publications reported about Titanium coatings cold sprayed with a nominal power input between 17 to 47 KW (e. g Kinetiks 4000) reaching gas temperatures of maximum 850 °C and gas pressure of maximum 4 MPa. In a recent study at Helmut-Schmidt University (HSU), a Kinetiks 8000 prototype was used to spray titanium, employing a nominal power of about 92 KW to increase the gas temperature up to 1000°C at a pressure of 4 MPa. Under these parameters, a high tensile strength of over 480 MPa and a deposition efficiency (DE) close to 100% were achieved. The present study focuses on further enhanced gas and particle velocities by optimized nozzle designs. The increased particle velocities in comparison to that obtained by using commercial nozzles (types 24, 51) result in better coating performance and allow deviations from ideal (90°) impact angle without significantly reducing coating strength. The influences of process conditions are evaluated and discussed on the basis of coating strengths by Micro Flat Tensile and Tubular Coating Tensile tests, as well as electrical conductivities, nitrogen and oxygen contents.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 1115-1120, September 27–29, 2011,
Abstract
PDF
Thick titanium coatings were prepared by warm spraying (WS) and cold spraying (CS) process to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particle were numerically calculated. Significant oxidation occurred in WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of an HVOF spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Although most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense, coating cross sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles. Even when scanning electron microscopy or x-ray diffraction method did not detect oxides in the coating layers by WS using high nitrogen flow rate or CS using helium, the inert gas fusion method revealed minor increase of oxygen content below 0.3 wt%.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 482-486, May 3–5, 2010,
Abstract
PDF
Despite much research effort and many application development studies, corrosion resistant alloy (CRA) coatings, prepared by thermal spraying still provide greatly inferior corrosion resistance when compared to parent material of the same composition, due to a network of oxides and pores in the coatings. However, the recent development of Cold Gas Dynamic Spray (CGDS) technology has made possible the deposition of low porosity and oxide-free CRA coatings. This paper describes the corrosion performance of Ni-based Alloy 625 following cold spraying onto steel substrates both as-sprayed and following heat treatment. Microstructures and oxygen content of powders and coatings were investigated, and coating microhardness and strength were determined in both as-sprayed and post treated conditions. Mercury intrusion was used to measure the interconnected porosity in the as-deposited and post-treated coatings. Finally, the corrosion behaviour of the sprayed and post-treated coatings was measured using a standard test (ASTM B117-07a).
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 225-230, May 4–7, 2009,
Abstract
PDF
In this study, two copper powders with different size distribution are applied to aluminum substrates using cold gas dynamic spraying. The powders are sprayed with helium gas at ambient temperature and at 200 °C. Investigators measure oxide content in the powders and correlate it with in-flight particle velocity, deposition efficiency, particle deformation, and coating properties including microhardness, structure, and dislocation density.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 237-242, May 4–7, 2009,
Abstract
PDF
During cold spraying, small particles are propelled to supersonic speeds and adhere to the substrate on impact, forming a strong bond. This work examines the effect of process gas temperature on cold spray coatings produced from commercially pure (CP) titanium powders. Nitrogen gases at 400, 600, and 800 °C were used as the propellant and nitrogen and oxygen content in the titanium coating was examined. The findings suggest that at high gas temperatures, the oxygen and nitrogen in the commercially pure titanium deposits increases at the particle boundaries.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 342-347, May 4–7, 2009,
Abstract
PDF
Critical velocity is an important parameter in cold spraying. It determines the deposition efficiency under a given spray condition. It depends not only on material types, but also particle temperature and oxidation conditions. In this present work, three types of materials including copper, 316L stainless steel, and Monel alloy were used to deposit coatings by cold spraying. The critical velocities of spray materials were determined using a novel measurement method. Oxygen content in three powders was changed by isothermal oxidation at ambient atmosphere. The effect of oxygen content on the critical velocity was examined. It was found that critical velocity was significantly influenced by particle oxidation besides material properties. The critical velocity of Cu particles increased from about 300 m/s to over 610 m/s with a change in oxygen content in the powder. The results suggest that with a severely oxidized powder, critical velocity tends to be dominated by the oxide on the powder rather than material properties.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 836-841, June 2–4, 2008,
Abstract
PDF
During the deposition of metallic cold sprayed coatings, it could be observed that only a thin layer is formed on the substrate and further building-up of a thick coating is not enabled. As for other thermal spray techniques, the formation of cold sprayed coatings can be divided to two stages: the creation of the first layer onto the substrate and the building-up of the coating itself onto as-sprayed layers. This two-stage build-up process was evidenced according the study of two Ti-6Al-4V powders exhibiting different characteristics (particle size, morphology, oxygen content, hardness, etc) which were sprayed by cold gas dynamic spraying onto substrates of different nature with various hardnesses (Ti-6Al-4V, AISI 304L, Al-alloy 2017). The phenomenology of the two-stage process is investigated in the present study. Cold spray conditions with pure nitrogen or pure helium as processes gas were applied to achieve a significant difference for particle velocities. The first stage of the process was completed by both powders with the formation of a first coating layer onto the various substrates. However, very different features for particle-substrate interactions (penetration depth and comparative deformation) were observed. For the particle-particle interaction (the second stage of the process), despite similar spraying conditions for both powders, the results were completely different since the formation of thick coating was achieved only with one of the powders. It was found that the intrinsic ductility of the material powder is the main parameter to promote the successful completion of both stages in order to achieve thick coatings.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 43-47, May 14–16, 2007,
Abstract
PDF
Warm Spray has demonstrated that it could fabricate comparatively dense metal coatings keeping with high purity during the atmospheric process. Its key technology is the control of the temperature of the supersonic combustion jet prior to supplying feedstock. So far, even titanium (Ti), known as one of materials difficult for the atmospheric process, could be deposited with less oxidation and higher density of the resulting coatings. For instance, the porosity and oxygen content of two coatings obtained were 2.3 vol% and 0.28mass%, and 1.1vol% and 0.92mass%, respectively. Further densification of Ti coatings was achieved by bi-modal size distribution of feedstock powder upon Warm Spraying in this study. When bigger Ti particles were mixed with the usual feedstock powder under 45 µm, the coating porosity was decreased to 0.8vol% simultaneously with the low oxygen content of 0.26mass%, which was comparable to the level of feedstock powder. This densification is caused by the balance of the enhancement of the peening effect by big particles and of optimization of the filling rate of the big and small particles.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 631-636, May 15–18, 2006,
Abstract
PDF
Thermal spraying of dense titanium coatings in the air atmosphere was achieved by using a two-stage high velocity oxy-fuel process (HVOF) called the Warm Spray Process. In the process nitrogen gas is mixed with the combustion gas to lower the gas temperature. Gas dynamics modeling of the flow field of the gas in the spray apparatus as well as the acceleration and heating of titanium powder injected from the powder feed ports were conducted. Based on the obtained temperature history of a titanium powder particle, its oxidation during flight was also predicted by using a Wagner-type oxidation model. These results were compared with measured velocity and temperature of sprayed particles by DPV2000 and the properties of deposited coatings. Significant discrepancy in the temperature of sprayed particles was found between the calculation and measurement whereas the measured velocity was closer to the model calculation. The model prediction of oxygen content was in a good agreement with the analysis of actual coatings. Furthermore, properties of the sprayed coatings such as porosity, oxygen content were correlated with the particle velocities and temperatures. Nitrogen gas was highly effective in lowering the oxygen content, but excessive nitrogen addition caused the coating porosity to increase due to insufficient particle temperatures.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 482-487, May 10–12, 2004,
Abstract
PDF
Improved HVOF spraying with a gas shroud has been developed to fabricate environmental barrier coatings of corrosion resistant alloys such as HastelloyC. For such coatings, control of oxidation of the powder material during spraying is very important and the gas shroud has been effective to lower oxygen content to 0.19mass%. In the present study, further reduction of oxygen content to 0.063mass% was achieved by changing the composition of combustion gas by introducing nitrogen into the combustion chamber. This value is almost comparable to the oxygen content 0.042mass% of the feedstock powder but the porosity of the coating increased. Introduction of nitrogen to the combustion chamber lowered the temperature of the spray particles in flight while maintaining their high velocity. Another coating with 0.14mass% was obtained with open porosity below 0.1vol% by changing the mixing ratio of nitrogen, which exhibited improved environmental barrier property in artificial seawater.