Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 135
Finite element analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 130-137, April 29–May 1, 2024,
Abstract
View Paper
PDF
Restoring the damaged shaft parts to extend their service life is an economical and environmentally friendly solution. In recent years, the laser metal deposition (LMD) process has received increasing attention in component restoration. However, the residual stress and deformation inevitably occur due to the heat input, leading to the deflection of the repaired shafts. Therefore, this study aims to minimize the deflection of LMD-repaired shaft parts through parameter optimization. The width and height of the LMD deposit as a function of the laser power and traverse speed were achieved by fitting a series of one-pass experimental results. Based on it, the finite element analysis was conducted to clarify the effect of the repairing conditions (e.g., laser power, traverse speed, and initial substrate temperature) on the deflection and residual stress distribution of the shaft parts after LMD repairing. A 304 stainless steel round bar with a diameter of 6 mm was served as the component to be repaired. The deposit was 316L stainless steel, whose deposition process was realized by the element birth and death technique. The results indicated that the free-end of the specimen experienced complicated deformation during the LMD and cooling process. After cooling off, the substrate presents a residual compressive stress along the axial direction. Moreover, the substrate deflection can be reduced by improving the initial substrate temperature. This study provided an important reference for optimizing the process parameters in repairing the shaft parts.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 580-593, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed wear resistant coatings have proven their effectiveness in many applications. Their benefit is unquestionable in the case of mutual sliding contact or abrasive stress caused by hard particles. However, for the case of dynamic impact loading, either single or cyclic, the lifetime of different types of coatings is rarely described, probably due to the complex influence of many parameters. The paper deals with the evaluation of resistance to dynamic impact loading of two types of HVOF-sprayed Cr3C2-rich binary hardmetal coatings (Cr3C2-42%WC-16%Ni and Cr3C2-37%WC-18%NiCoCr) with respect to the variation of their deposition parameters and compares them to a well established Cr3C2-25%NiCr coating. For each coating, a Wohler-like curve was constructed based on a failure criterion of sudden increase in impact crater volume. Besides, coatings deposition rate, residual stress, microstructure and hardness were evaluated. Differences in the coatings dynamic impact wear resistance was found, related to their residual stress. The failure mechanism and crack propagation mode are analyzed using SEM of impact surface and cross-sections. Deformation and related stress changes in coated systems during dynamic impact loading are described using FEA analyzes.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 712-723, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cobalt chromium (CoCr), a well-known biocompatible material, was additively manufactured using direct energy deposition (DED) technology in this study. Since DED is a relatively new addition to additive manufacturing (AM) processes, there is not enough information about important properties of fabricated parts and components using this technology. This study investigates some important mechanical characteristics of the additively manufactured CoCr using a variety of numerical simulation methods in addition to mechanical tests and experiments. Mechanical experiments such as hardness, wear, and flexural bending test were conducted on DED processed samples. All experiments were also conducted on conventionally processed CoCr specimens for comparison purposes. This study attempts to explain mechanical properties in terms of microstructural characteristics of each sample. DED processed CoCr samples exhibited a complex microstructure with a variety of features such as cellular, columnar, and equiaxed grains within their melt pools. While the DED processed sample had a lower hardness compared to the conventionally processed one, it exhibited a higher wear resistance. These results were discussed in terms of microstructural characteristics and metallurgical bonding knowing that porosity level was negligible in both samples. The out-of-plane mechanical strength of CoCr samples was measured by conducting flexural bending test, and the conventional sample showed a higher flexural modulus than the DED sample. The bend tests were also numerically simulated using two different finite element analysis (FEA) procedures. The FEA results for the DED and conventionally processed samples follow the same trend as the results obtained from the experimental flexural bending test. The layer structure and interfacial bonding of the DED sample could have contributed to the lower flexural modulus compared to the conventional sample.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 222-228, May 22–25, 2023,
Abstract
View Paper
PDF
Metallization of polymers and fiber-reinforced polymer composites is gaining attention due to the widespread application of these components in various industries, such as wind energy, aerospace, and automotive industries. Cold spray is a promising new technique to achieve the metallization of polymer and fiber-reinforced polymer composites. This work investigates the deposition mechanisms of polymer-coated metallic particles on polymer-based substrates by finite element analyses. Impact mechanics of PEEK-coated nickel particles impacting PEEK and carbon fiber-reinforced PEEK substrates are modeled. Results show the prominence of mechanical interlocking of metallic particles in the substrate, which occurs due to their entrapment inside the substrate, caused by the high energy impact-induced welding of scraped PEEK coating. The PEEK coating acts as a cushioning component, effectively mitigating the impact energy of the metallic component. The scraped PEEK coating also accumulates on the upper half of the particle, forming a cap welded to the substrate and sealing the metallic particle inside. It is observed that the depth of the carbon fiber mat in the substrate affects the mechanism and the success of deposition.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 538-546, May 22–25, 2023,
Abstract
View Paper
PDF
The formation of Nickel coatings on stainless steel substrates and YSZ (Yttria-Stabilized Zirconia) on NiCrAlY in the Atmospheric Plasma Spray (APS) process is investigated. Coating formation over a substrate with an arbitrary shape (an inclined step in this paper) is considered. The topography of the coatings, as well as their microstructure, e.g., porosity, average thickness, and average roughness, are evaluated. An algorithm, which is based on the Monte-Carlo stochastic model, is employed. The significant difference between the coating temperature and that of the substrate leads to the formation of residual thermal stresses. These stresses are analyzed using Object Oriented Finite-element software (OOF) developed by the National Institute of Standards and Technology (NIST). An image of the cross-section of the coating is imported into the code, which utilizes an adaptive meshing technique and Finite- Element Method to calculate residual thermal stresses. The maximum stress in the coatings occurs at the interface between the coating and the substrate. The coatings' topography and microstructure are compared with those of the experiments.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 364-368, May 4–6, 2022,
Abstract
View Paper
PDF
During the thermal cycling process in MCrAlY-YSZ thermal barrier coating system, stresses are produced at bondcoat (BC)-topcoat (TC) interface due to the mismatch of the thermal expansion coefficients of the two coating layers. The stresses at the interface are not a single value and can be affected by the coatings’ microstructure. In this paper, finite element (FE) modeling method was used to study the behavior of the stress distribution at the coatings’ interface. The influence of the pore structure in the ceramic TC and the micro bulge structure at the metal BC surface was investigated. The results showed that both structures can change the stress distribution. The pores played a “stone-in-river” role, which trapped higher stress around them and simultaneously reduced the size of the macro stress zones in TC. The micro bulges at the TC/BC interface also trapped high stresses which could cause more interaction between TC cracks and BC roughness.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 928-938, May 4–6, 2022,
Abstract
View Paper
PDF
In recent years, laser-based post-processing of thermally sprayed coatings has gained significant attention as an alternative post-processing route; to mitigate the microstructural defects such as pores, microcracks, and splat boundaries associated with thermally sprayed coatings. Optimisation of the parameters for the laser post-processing is of paramount importance to maintain the required properties of these coatings. The current thermo-mechanical model simulates the impact of laser heat treatment on thermally sprayed Tungsten Carbide Cobalt (WC-17Co) coating and AISI 316L as substrate. A sequentially coupled transient thermal and structural analysis is performed. Transient temperature field from thermal analysis due to laser source will become input loads for the subsequent stress-strain analysis with appropriate boundary conditions. Both the coating and substrate are given temperature-dependent material properties. A gaussian heat flux distribution is used to model the laser source. The finite element analysis results underline the importance of temperature gradients and the presence of thermally induced stress-strain fields responsible for promoting coating degradation. The obtained results also revealed that heat input and dimensional characteristics play a vital role in the annealing treatment's efficacy. Three separate test cases were considered wherein the hatch spacing was varied, keeping the other parameters (scan speed, laser power, and laser spot diameter) constant. The impact of hatch spacing on the temperature and residual stress distribution across the coating was assessed by this simulation. Residual compressive stress was observed in the coating for two out of the three test cases, which further improved the durability of the coating.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 990-999, May 4–6, 2022,
Abstract
View Paper
PDF
Cold spray is a well-established thermal spray process for metal coatings, but it is unsuitable for depositing ceramics. However, cold spray has been used to spray a thin layer of ceramics to improve surface properties. This paper aims to find the spraying parameters to deposit alumina particles onto an aluminum substrate, investigating the retention phenomenon through computational modelling. We used the finite element analysis in the coupled Eulerian Lagrange formulation to predict the particle-substrate interaction. The Johnson-Cook plasticity model and Mie-Gruneisen equation of state were employed to describe the substrate behaviour. Alumina particles were assumed to be elastic. To assess the retention phenomenon, we varied spraying parameters such as particle speed, substrate temperature, and deposition angle. The findings showed that initial velocity and the substrate temperature facilitate penetration of the ceramic particles into the substrate; thus, the penetration increases the chance of retention into the substrate. The deposition angle affects the jet shape, and specific deposition angles cause erosion. Overall, the findings denote that certain cold spraying parameters may improve the retention of ceramic particles into metal substrates.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 31-35, May 24–28, 2021,
Abstract
View Paper
PDF
The abradable coatings had significantly enhanced turbomachinery performance by acting as a sacrificial seal between rotating blades and stationary casing. Further improvement in seal design to meet the higher energy demand and increase the service time has been the key challenges to solve in the gas turbine industry. Honeycomb seals have become the industry standard clearance seal technique due to their unique design and high structural strength with minimum weight. The present study proposes a concept to form a thermal shock resistance structure to achieve higher temperature capability and improve the reliability of abradable seal structures. A cavity layer of honeycomb seal structure made of SS 321 alloy was coated with advanced high-temperature ZrO 2 +7.5%Y 2 O 3 +4% polyester seal material using TriplexPro-210 plasma spray system. The integrity of a seal structure was assessed by a cross-sectional analysis and evaluation of the coating microstructure. Additionally, the microhardness test was performed to estimate coating fracture toughness, and Object-Oriented Finite Element analysis was used to assess its thermo-mechanical performance. The concept proposed in this study should be further validated to develop the most capable innovative technology for advanced gas turbine abradable seal structures.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 75-78, May 24–28, 2021,
Abstract
View Paper
PDF
Because of their high specific strength, carbon fiber reinforced plastics (CFRPs) are widely used in the aerospace industry. Metallization of CFRP by cold spraying as a surface modification method can improve the low thermal resistance and electrical conductivity of CFRP without the need for high heat input. Herein, we cold spray a Sn coating on cured CFRP substrates and examine the Sn/epoxy interface. The results suggest that the Sn coatings are successfully obtained at a gas temperature of 473 K and indicate no severe damage to the CFRP substrates. The stress and plastic strain distributions at the cross-section of the Sn/CFRP interface when a Sn particle is impacted onto the CFRP substrate are obtained using the finite element method.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 235-240, May 24–28, 2021,
Abstract
View Paper
PDF
In this study, a new physically-based finite element approach is proposed to model and predict the superficial oxide layer removal and the occurrence of localized metallic bonding during particle impacts. The process physics, based on explosive welding theory and experiments, and method implementation is presented. Prediction of critical velocity of copper is obtained and compared to experimental data to validate the model. Moreover, the model is also able to show the bonding locations at the interface between particles and substrate. The predicted bonding locations are consistent with experimental data from literature for several metals.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 261-267, May 24–28, 2021,
Abstract
View Paper
PDF
The understanding of residual stress is of critical importance in the cold spray and thermal spray processes. It has a direct effect on the integrity of the coating related to the adhesion strength, fatigue life, and can lead to undesired effects such as the delamination of the coating. In cold spray, several investigations have evaluated the impact of the residual stress on the coatings, and it is generally accepted that cold spray coatings follow a similar profile to those obtained in the shot peening process. Although the measurement of residual stresses gives fundamental insight into the process, the estimation of such stresses considering the deposition of each layer by numerical methods has not been extensively studied. This work proposes a method for analyzing the evolution of residual stress on a cold spray coating, both on the coating and the substrate, as a function of the deposited layers, using Finite Element Analysis (FEA). The evolution of the residual stress profile with the coating thickness was obtained along the transverse direction. The results were compared to experimental and numerical data from previous studies. The influence of the deposition of each layer on the residual stress profile has been discussed.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 386-395, May 24–28, 2021,
Abstract
View Paper
PDF
This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 396-401, May 24–28, 2021,
Abstract
View Paper
PDF
Recently, cold spray (CS) technology has attracted extensive interest as an alternative to thermal spray methods to build a coating, which uses high kinetic energy solid particles to impact and adhere to the substrate. To date, numerous numerical studies have been carried out to investigate the deposition processes and associated mechanisms during multiple particle impact in CS. However, in the commonly used numerical techniques, the individual powder particles are often treated separately from one another, thus fail to properly consider the adhesion mechanisms during deposition. In this study, we propose a new numerical approach on base of peridynamics (PD), which incorporates interfacial interactions as a part of constitutive model to capture deformation, bonding and rebound of impacting particles in one unified framework. Two models are proposed to characterize the adhesive contacts: a) a long-range Lenard-Johns type potential that reproduce the mode I fracture energy by suitable calibrations, and b) a force - stretch relation of interface directly derived from the bulk materials mode I fracture simulations. The particle deformation behavior modeled by the peridynamic method compares well with the benchmark finite element method results, which indicates the applicability of the peridynamic model for CS simulation. Furthermore, it is shown that the adhesive contact models can accurately describe interfacial bonding between the powder particles and substrate.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 402-409, May 24–28, 2021,
Abstract
View Paper
PDF
Additive manufacturing processes have been used to produce or repair components in different industry sectors like aerospace, automotive, and biomedical. In these processes, a part can be built by either melted particles as in selective laser melting (SLM) or solid-state particles as in the cold spray process. The cold spray has gained significant attention due to its potential for high deposition rate and nearly zero oxidation. However, the main concern associated with using the cold spray is the level of porosity in as-fabricated samples, altering their mechanical properties. These pores are primarily found in the regions where adiabatic shear instability does not occur. It is worth noting that the deformation of the impacted solid particle plays a vital role in reaching the shear instability. Therefore, for investigating the adiabatic shear instability region, an elastic-plastic simulation approach has been used. For this purpose, it is assumed that an elevated temperature solid Ti6Al4V particle impacts on a stainless-steel substrate surface at high velocity. The results show that increasing particle temperature will significantly enhance particle deformation because of thermal softening. Additionally, they illustrate that a material jet responsible for producing a bonding between particle and substrate by ejecting the broken oxide layer will be formed when the particle has a temperature above 1073 K and substrate remains at room temperature. In the end, it should be noted that increasing particle temperature up to 723 K will not have a significant effect on substrate deformation and final substrate temperature.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 627-634, May 24–28, 2021,
Abstract
View Paper
PDF
In cold spray, particles undergo large plastic deformation upon impact in a rapid dynamic regime (up to 109 s-1) at solid state. The simulation of this impact is key to understanding the cold spray process. In this study, an approach based on laser shock and micro-compression testing was developed to characterize the mechanical behavior of powders and fit parameters of the Johnson-Cook material behavior model. In situ micro-compression particle testing was performed in a SEM equipped with a microindentation stage. From subsequent FEM simulations of the test, static coefficients of the Johnson-Cook model were identified. A laser shock powder launcher (LASHPOL) was also developed to accelerate single particles and measure their corresponding velocity using high-speed imaging. In addition, image analysis of the particles before and after impact, together with FEM simulation, were used to determine strain rate hardening coefficients for the Johnson-Cook model.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 831-837, May 26–29, 2019,
Abstract
View Paper
PDF
This study focuses on the relationship between porosity and leak tightness in cold-sprayed aluminum. Aluminum coatings with 0.2-9% porosity were produced by cold spraying and evaluated via helium leak testing. Multiscale porosity was determined through SEM and TEM analyses and shows good correlation with leak test results. The mechanisms involved in the creation of porosity were investigated as well through finite element analysis of single and multi-particle impacts.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 846-852, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, finite element models are used to simulate the impact of porous WC-Co and Al particles cold sprayed onto substrates of the same materials. Effects of high strain rate, heat generation due to plasticity, interfacial friction, heat transfer, and material damage and failure are taken into account as are differences in the initial kinetic energy and strength of the materials. It was found that the influence of porosity increases with impact velocity and that the pores channel stress waves in unique ways not observed for solid particles. The results suggest that using porous particles for solid-state consolidation, as in cold spraying, could have advantages in terms of energy dissipation, although further investigation is required.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 908-915, May 26–29, 2019,
Abstract
View Paper
PDF
The aim of this study is to characterize the mechanical behavior of wire-arc sprayed Zn-Al coatings and correlate the results with microstructure via computational techniques. High-resolution microstructural images obtained by SEM were imported into NIST-developed FEA software, which calculates macroscale properties based on user-selected features such as voids, pores, cracks, and splat boundaries. To assess the validity of the approach, elastic modulus was measured various ways and the results compared to the simulated value. Resonant frequency analysis provided the most accurate measurement, which was found to be closest to the simulated value.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 592-598, May 26–29, 2019,
Abstract
View Paper
PDF
Knowledge of thermal interactions between the substrate and deposited particles during cold spraying can shed light on coating formation and bonding mechanisms. In this study, a mathematical model based on the differential quadrature method was used to solve the hyperbolic heat conduction problem to predict the transient thermal evolution associated with the impact of a single particle. In addition, a 2D finite element model was developed to simulate the thermal and dynamic behavior of particle impact. The two models showed good agreement in predicting the maximum temperature at the particle-substrate interface. It was concluded that the proposed mathematical model could be used to predict the transient temperature of metallic and nonmetallic particle-substrate interfaces during cold spray deposition.
1