Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Spray granulation and drying
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1100-1106, May 10–12, 2016,
Abstract
View Paper
PDF
The aim of this work is to fabricate nanostructured ceramic coatings using unsintered agglomerated powder and to characterize differences in microstructure, especially those at the nanoscale, due to spraying conditions. Feedstock powders were prepared from commercial YSZ nanoparticles that were reconstituted into solid spheres (70-100 μm) by spray drying. The surface morphology of sintered and unsintered agglomerates was examined by FE-SEM prior to deposition by atmospheric plasma spraying using two gun configurations, one with a lengthened barrel and one with water cooling. YSZ coating cross-sections were examined by optical and electron microscopy, revealing details at the micro and nano scale. The results show that the unsintered agglomerates, which were successfully deposited using both spray guns, are favorable for developing bimodal coating structures with fine grains and porous nano zones.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1114-1119, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, high-emissivity NiCr oxide coatings, one with TiO 2 and one with TiB 2 compounds, were deposited on stainless steel substrates by spray granulation and atmospheric plasma spraying. The main phases in both coatings are NiTiO 3 , spinel (NiCr 2 O 4 ), and residual Cr 2 O 3 . The emissivity of the layer with TiO 2 was found to be higher in the 2.5-8 μm range than that of the layer with TiB 2 , which is attributed to higher surface roughness and larger particle size. These results indicate that the NiCr oxide coatings with TiO 2 compounds are more suitable for high-temperature IR applications.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1120-1131, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, (La 0.9 Ca 0.1 )(Cr 0.9 Mg 0.1 )O 3 ceramic powders prepared by solid-state synthesis were deposited on nickel-base superalloy substrates by atmospheric plasma spraying. Powder morphology and coating surfaces were examined by SEM, and composition and phase structure were evaluated by EDS and XRD. Coating porosity and bond strength were measured and emissivity and thermal shock tests were carried out. The results show that the powders maintained their perovskite structure during spraying and that no impurities were introduced in flight. The emissivity of the coatings was found to be 0.88 at 600 °C and 0.89 at 800 °C, which is attributed to lattice distortion stemming from differences between doping and original ions and the valence states of Mg 2+ and Cr 3+ . Coating crystal structure was stable over the thermal shock range from room temperature to 1100 °C and no spalling or fracture occurred after ten shock cycles.
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 307-311, May 13–15, 2013,
Abstract
View Paper
PDF
This study compares the morphology, porosity, and purity of yttria powders produced by spray drying, spray drying and sintering (SDS), and spray drying and plasma fusion (SDPF). The surface morphology of each type of powder is examined by SEM. Pore volume and density are determined by Hg porosimetry, and impurity concentrations are assessed via glow discharge mass spectrometry (GDMS). Coatings made from the powders by means of air plasma spraying are evaluated based on porosity, spray time, powder consumption, and embedded fine particles.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1245-1248, May 25–29, 1998,
Abstract
View Paper
PDF
A new family of spherical powders produced by the spray drying route has been developed. This paper describes as an example the manufacturing method of an Y2O3-coated aluminum powder. Atmospheric Plasma Spraying (APS) was used to test the corresponding coatings. Morphology and phases of powders and coatings were investigated by optical and scanning electron microscopy while the level of porosity was evaluated using image analysis. Results show that homogenous composite coatings can be obtained from cladded spray dried powders.